31 research outputs found

    Teilchendesorption von Nichtleiter-Oberflaechen durch Schwerionen hoher Energie

    No full text
    SIGLECopy held by FIZ Karlsruhe; available from UB/TIB Hannover / FIZ - Fachinformationszzentrum Karlsruhe / TIB - Technische InformationsbibliothekDEGerman

    Edge roughness quantifies impact of physician variation on training and performance of deep learning auto-segmentation models for the esophagus

    No full text
    Abstract Manual segmentation of tumors and organs-at-risk (OAR) in 3D imaging for radiation-therapy planning is time-consuming and subject to variation between different observers. Artificial intelligence (AI) can assist with segmentation, but challenges exist in ensuring high-quality segmentation, especially for small, variable structures, such as the esophagus. We investigated the effect of variation in segmentation quality and style of physicians for training deep-learning models for esophagus segmentation and proposed a new metric, edge roughness, for evaluating/quantifying slice-to-slice inconsistency. This study includes a real-world cohort of 394 patients who each received radiation therapy (mainly for lung cancer). Segmentation of the esophagus was performed by 8 physicians as part of routine clinical care. We evaluated manual segmentation by comparing the length and edge roughness of segmentations among physicians to analyze inconsistencies. We trained eight multiple- and individual-physician segmentation models in total, based on U-Net architectures and residual backbones. We used the volumetric Dice coefficient to measure the performance for each model. We proposed a metric, edge roughness, to quantify the shift of segmentation among adjacent slices by calculating the curvature of edges of the 2D sagittal- and coronal-view projections. The auto-segmentation model trained on multiple physicians (MD1-7) achieved the highest mean Dice of 73.7 ± 14.8%. The individual-physician model (MD7) with the highest edge roughness (mean ± SD: 0.106 ± 0.016) demonstrated significantly lower volumetric Dice for test cases compared with other individual models (MD7: 58.5 ± 15.8%, MD6: 67.1 ± 16.8%, p < 0.001). A multiple-physician model trained after removing the MD7 data resulted in fewer outliers (e.g., Dice ≤ 40%: 4 cases for MD1-6, 7 cases for MD1-7, Ntotal = 394). While we initially detected this pattern in a single clinician, we validated the edge roughness metric across the entire dataset. The model trained with the lowest-quantile edge roughness (MDER-Q1, Ntrain = 62) achieved significantly higher Dice (Ntest = 270) than the model trained with the highest-quantile ones (MDER-Q4, Ntrain = 62) (MDER-Q1: 67.8 ± 14.8%, MDER-Q4: 62.8 ± 15.7%, p < 0.001). This study demonstrates that there is significant variation in style and quality in manual segmentations in clinical care, and that training AI auto-segmentation algorithms from real-world, clinical datasets may result in unexpectedly under-performing algorithms with the inclusion of outliers. Importantly, this study provides a novel evaluation metric, edge roughness, to quantify physician variation in segmentation which will allow developers to filter clinical training data to optimize model performance

    Artificial intelligence in radiation oncology

    Get PDF
    The possible uses of artificial intelligence (AI) in radiation oncology are diverse and wide ranging. Herein, the authors discuss the potential applications of AI at each step of the radiation oncology workflow, which might improve the efficiency and overall quality of radiation therapy for patients with cancer. The authors also describe the associated challenges and provide their perspective on how AI platforms might change the roles of radiation oncology medical professionals.Artificial intelligence (AI) has the potential to fundamentally alter the way medicine is practised. AI platforms excel in recognizing complex patterns in medical data and provide a quantitative, rather than purely qualitative, assessment of clinical conditions. Accordingly, AI could have particularly transformative applications in radiation oncology given the multifaceted and highly technical nature of this field of medicine with a heavy reliance on digital data processing and computer software. Indeed, AI has the potential to improve the accuracy, precision, efficiency and overall quality of radiation therapy for patients with cancer. In this Perspective, we first provide a general description of AI methods, followed by a high-level overview of the radiation therapy workflow with discussion of the implications that AI is likely to have on each step of this process. Finally, we describe the challenges associated with the clinical development and implementation of AI platforms in radiation oncology and provide our perspective on how these platforms might change the roles of radiotherapy medical professionals.</p
    corecore