180 research outputs found

    Prototyping a High-Frequency Inductive Magnetic Sensor Using the Nonconventional, Low-Temperature Co-Fired Ceramic Technology for Use in ITER

    Get PDF
    The ITER high-frequency (HF) magnetic sensor is currently intended to be a conventional, Mirnov-type, pickup coil, designed to provide measurements of magnetic instabilities with magnitude as low as |dB|~10e-4G at the position of the sensors and up to frequencies of at least 300 kHz. Previous prototyping of this sensor has indicated that a number of problems exist with this conventional design that are essentially related to the winding^process and the differential thermal expansion between the metallic wire and the ceramic spacers. Hence, a non-conventional HF magnetic sensor has been designed and prototyped in-house in different variants using low-temperature co-fired ceramic (LTCC) technology, which involves a series of stacked ceramic substrates with a circuit board printed on them with a metallic ink (silver in our case). A method has then been developed to characterize the electrical properties of these sensors from the direct-current range up to frequencies in excess of 10MHz. This method has been successfully benchmarked against the measurements for the built sensors and allows the electrical properties of LTCC prototypes to be predicted with confidence and without the need of actually building them, which therefore significantly simplifies future research and development (R&D) activities. When appropriate design choices are made, LTCC sensors are found to meet in full the volume occupation constraints and the requirements for the sensor's electrical properties that are set out for the ITER HF magnetic diagnostic system. This non-conventional technology is therefore recommended for further R&D and prototyping work, particularly for a three-dimensional sensor, and possibly using materials more suitable for use in the ITER environment, such as palladium and platinum inks, which could remove the perceived risk of transmutation under the heavy neutron flux that we may have with the Au (to Hg, then to Pb) or the Ag (to Cd) metallic inks currently used in LTCC devices

    Baseline System Design And Prototyping For The Iter High-Frequency Magnetic Diagnostics Set

    Get PDF
    This paper reports the mechanical and electrical tests performed for the prototyping of the ITER high-frequency magnetic sensor and the analysis of the measurement performance of this diagnostic. The current design for the sensor is not suitable for manufacturing for ITER due to the high likelihood of breakages of the un-guided tungsten wire during the winding. A number of alternative designs and manufacturing processes have been investigated, with the Low Temperature Co-fired Ceramic technology giving the best results. The measurement performance of the baseline system design for the high-frequency magnetic diagnostic cannot meet the intended ITER requirements due to its intrinsic spatial periodicities

    Purification and immobilization of engineered glucose dehydrogenase: A new approach to producing gluconic acid from breadwaste

    Get PDF
    Background Platform chemicals are essential to industrial processes. Used as starting materials for the manufacture of diverse products, their cheap availability and efficient sourcing are an industrial requirement. Increasing concerns about the depletion of natural resources and growing environmental consciousness have led to a focus on the economics and ecological viability of bio-based platform chemical production. Contemporary approaches include the use of immobilized enzymes that can be harnessed to produce high-value chemicals from waste. Results In this study, an engineered glucose dehydrogenase (GDH) was optimized for gluconic acid (GA) production. Sulfolobus solfataricus GDH was expressed in Escherichia coli. The Km and Vmax values for recombinant GDH were calculated as 0.87 mM and 5.91 U/mg, respectively. Recombinant GDH was immobilized on a hierarchically porous silica support (MM-SBA-15) and its activity was compared with GDH immobilized on three commercially available supports. MM-SBA-15 showed significantly higher immobilization efficiency (> 98%) than the commercial supports. After 5 cycles, GDH activity was at least 14% greater than the remaining activity on commercial supports. Glucose in bread waste hydrolysate was converted to GA by free-state and immobilized GDH. After the 10th reuse cycle on MM-SBA-15, a 22% conversion yield was observed, generating 25 gGA/gGDH. The highest GA production efficiency was 47 gGA/gGDH using free-state GDH. Conclusions This study demonstrates the feasibility of enzymatically converting BWH to GA: immobilizing GDH on MM-SBA-15 renders the enzyme more stable and permits its multiple reuse

    Current strategies for treatment of intervertebral disc degeneration: substitution and regeneration possibilities

    Get PDF
    Background: Intervertebral disc degeneration has an annual worldwide socioeconomic impact masked as low back pain of over 70 billion euros. This disease has a high prevalence over the working age class, which raises the socioeconomic impact over the years. Acute physical trauma or prolonged intervertebral disc mistreatment triggers a biochemical negative tendency of catabolic-anabolic balance that progress to a chronic degeneration disease. Current biomedical treatments are not only ineffective in the long-run, but can also cause degeneration to spread to adjacent intervertebral discs. Regenerative strategies are desperately needed in the clinics, such as: minimal invasive nucleus pulposus or annulus fibrosus treatments, total disc replacement, and cartilaginous endplates decalcification. Main Body: Herein, it is reviewed the state-of-the-art of intervertebral disc regeneration strategies from the perspective of cells, scaffolds, or constructs, including both popular and unique tissue engineering approaches. The premises for cell type and origin selection or even absence of cells is being explored. Choice of several raw materials and scaffold fabrication methods are evaluated. Extensive studies have been developed for fully regeneration of the annulus fibrosus and nucleus pulposus, together or separately, with a long set of different rationales already reported. Recent works show promising biomaterials and processing methods applied to intervertebral disc substitutive or regenerative strategies. Facing the abundance of studies presented in the literature aiming intervertebral disc regeneration it is interesting to observe how cartilaginous endplates have been extensively neglected, being this a major source of nutrients and water supply for the whole disc. Conclusion: Severalinnovative avenues for tackling intervertebral disc degeneration are being reported â from acellular to cellular approaches, but the cartilaginous endplates regeneration strategies remain unaddressed. Interestingly, patient-specific approaches show great promise in respecting patient anatomy and thus allow quicker translation to the clinics in the near future.The authors would like to acknowledge the support provided by the Portuguese Foundation for Science and Technology (FCT) through the project EPIDisc (UTAP-EXPL/BBBECT/0050/2014), funded in the Framework of the “International Collaboratory for Emerging Technologies, CoLab”, UT Austin|Portugal Program. The FCT distinctions attributed to J. Miguel Oliveira (IF/00423/2012 and IF/01285/ 2015) and J. Silva-Correia (IF/00115/2015) under the Investigator FCT program are also greatly acknowledged.info:eu-repo/semantics/publishedVersio
    • …
    corecore