80 research outputs found

    Absence of system xc⁻ on immune cells invading the central nervous system alleviates experimental autoimmune encephalitis

    Get PDF
    Background: Multiple sclerosis (MS) is an autoimmune demyelinating disease that affects the central nervous system (CNS), leading to neurodegeneration and chronic disability. Accumulating evidence points to a key role for neuroinflammation, oxidative stress, and excitotoxicity in this degenerative process. System x(c)- or the cystine/glutamate antiporter could tie these pathological mechanisms together: its activity is enhanced by reactive oxygen species and inflammatory stimuli, and its enhancement might lead to the release of toxic amounts of glutamate, thereby triggering excitotoxicity and neurodegeneration. Methods: Semi-quantitative Western blotting served to study protein expression of xCT, the specific subunit of system x(c)-, as well as of regulators of xCT transcription, in the normal appearing white matter (NAWM) of MS patients and in the CNS and spleen of mice exposed to experimental autoimmune encephalomyelitis (EAE), an accepted mouse model of MS. We next compared the clinical course of the EAE disease, the extent of demyelination, the infiltration of immune cells and microglial activation in xCT-knockout (xCT(-/-)) mice and irradiated mice reconstituted in xCT(-/-) bone marrow (BM), to their proper wild type (xCT(+/+)) controls. Results: xCT protein expression levels were upregulated in the NAWM of MS patients and in the brain, spinal cord, and spleen of EAE mice. The pathways involved in this upregulation in NAWM of MS patients remain unresolved. Compared to xCT(+/+) mice, xCT(-/-) mice were equally susceptible to EAE, whereas mice transplanted with xCT(-/-) BM, and as such only exhibiting loss of xCT in their immune cells, were less susceptible to EAE. In none of the above-described conditions, demyelination, microglial activation, or infiltration of immune cells were affected. Conclusions: Our findings demonstrate enhancement of xCT protein expression in MS pathology and suggest that system x(c)- on immune cells invading the CNS participates to EAE. Since a total loss of system x(c)- had no net beneficial effects, these results have important implications for targeting system x(c)- for treatment of MS

    Functional features of gene expression profiles differentiating gastrointestinal stromal tumours according to KIT mutations and expression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Gastrointestinal stromal tumours (GISTs) represent a heterogeneous group of tumours of mesenchymal origin characterized by gain-of-function mutations in <it>KIT </it>or <it>PDGFRA </it>of the type III receptor tyrosine kinase family. Although mutations in either receptor are thought to drive an early oncogenic event through similar pathways, two previous studies reported the mutation-specific gene expression profiles. However, their further conclusions were rather discordant. To clarify the molecular characteristics of differentially expressed genes according to GIST receptor mutations, we combined microarray-based analysis with detailed functional annotations.</p> <p>Methods</p> <p>Total RNA was isolated from 29 frozen gastric GISTs and processed for hybridization on GENECHIP<sup>® </sup>HG-U133 Plus 2.0 microarrays (Affymetrix). <it>KIT </it>and <it>PDGFRA </it>were analyzed by sequencing, while related mRNA levels were analyzed by quantitative RT-PCR.</p> <p>Results</p> <p>Fifteen and eleven tumours possessed mutations in <it>KIT </it>and <it>PDGFRA</it>, respectively; no mutation was found in three tumours. Gene expression analysis identified no discriminative profiles associated with clinical or pathological parameters, even though expression of hundreds of genes differentiated tumour receptor mutation and expression status. Functional features of genes differentially expressed between the two groups of GISTs suggested alterations in angiogenesis and G-protein-related and calcium signalling.</p> <p>Conclusion</p> <p>Our study has identified novel molecular elements likely to be involved in receptor-dependent GIST development and allowed confirmation of previously published results. These elements may be potential therapeutic targets and novel markers of <it>KIT </it>mutation status.</p

    M-CSF Induces Monocyte Survival by Activating NF-κB p65 Phosphorylation at Ser276 via Protein Kinase C

    Get PDF
    Macrophage colony-stimulating factor (M-CSF) promotes mononuclear phagocyte survival and proliferation. The transcription factor Nuclear Factor-kappaB (NF-κB) is a key regulator of genes involved in M-CSF-induced mononuclear phagocyte survival and this study focused at identifying the mechanism of NF-κB transcriptional activation. Here, we demonstrate that M-CSF stimulated NF-κB transcriptional activity in human monocyte-derived macrophages (MDMs) and the murine macrophage cell line RAW 264.7. The general protein kinase C (PKC) inhibitor Ro-31-8220, the conventional PKCα/β inhibitor Gö-6976, overexpression of dominant negative PKCα constructs and PKCα siRNA reduced NF-κB activity in response to M-CSF. Interestingly, Ro-31-8220 reduced Ser276 phosphorylation of NF-κBp65 leading to decreased M-CSF-induced monocyte survival. In this report, we identify conventional PKCs, including PKCα as important upstream kinases for M-CSF-induced NF-κB transcriptional activation, NF-κB-regulated gene expression, NF-κB p65 Ser276 phosphorylation, and macrophage survival. Lastly, we find that NF-κB p65 Ser276 plays an important role in basal and M-CSF-stimulated NF-κB activation in human mononuclear phagocytes

    Paracrine IL-33 Stimulation Enhances Lipopolysaccharide-Mediated Macrophage Activation

    Get PDF
    BACKGROUND: IL-33, a member of the IL-1 family of cytokines, provokes Th2-type inflammation accompanied by accumulation of eosinophils through IL-33R, which consists of ST2 and IL-1RAcP. We previously demonstrated that macrophages produce IL-33 in response to LPS. Some immune responses were shown to differ between ST2-deficient mice and soluble ST2-Fc fusion protein-treated mice. Even in anti-ST2 antibody (Ab)-treated mice, the phenotypes differed between distinct Ab clones, because the characterization of such Abs (i.e., depletion, agonistic or blocking Abs) was unclear in some cases. METHODOLOGY/PRINCIPAL FINDINGS: To elucidate the precise role of IL-33, we newly generated neutralizing monoclonal Abs for IL-33. Exogenous IL-33 potentiated LPS-mediated cytokine production by macrophages. That LPS-mediated cytokine production by macrophages was suppressed by inhibition of endogenous IL-33 by the anti-IL-33 neutralizing mAbs. CONCLUSIONS/SIGNIFICANCE: Our findings suggest that LPS-mediated macrophage activation is accelerated by macrophage-derived paracrine IL-33 stimulation

    Alternative splicing and transcriptome profiling of experimental autoimmune encephalomyelitis using genome-wide exon arrays

    Get PDF
    BACKGROUND: Multiple Sclerosis (MS) is a chronic inflammatory disease causing demyelination and nerve loss in the central nervous system. Experimental autoimmune encephalomyelitis (EAE) is an animal model of MS that is widely used to investigate complex pathogenic mechanisms. Transcriptional control through isoform selection and mRNA levels determines pathway activation and ultimately susceptibility to disease. METHODOLOGY/PRINCIPAL FINDINGS: We have studied the role of alternative splicing and differential expression in lymph node cells from EAE-susceptible Dark Agouti (DA) and EAE-resistant Piebald Virol Glaxo.AV1 (PVG) inbred rat strains using Affymetrix Gene Chip Rat Exon 1.0 ST Arrays. Comparing the two strains, we identified 11 differentially spliced and 206 differentially expressed genes at day 7 post-immunization, as well as 9 differentially spliced and 144 differentially expressed genes upon autoantigen re-stimulation. Functional clustering and pathway analysis implicate genes for glycosylation, lymphocyte activation, potassium channel activity and cellular differentiation in EAE susceptibility. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that alternative splicing occurs during complex disease and may govern EAE susceptibility. Additionally, transcriptome analysis not only identified previously defined EAE pathways regulating the immune system, but also novel mechanisms. Furthermore, several identified genes overlap known quantitative trait loci, providing novel causative candidate targets governing EAE

    Predictors of nutritive sucking in preterm infants,”

    No full text
    Objective: The purposes of this analysis were to determine how select characteristics of nutritive sucking (number of sucks, sucks/burst, and sucks/minute) change over time and to examine the effect of select factors (morbidity, maturity, prefeeding behavior state, and feeding experience) on those changes. Study design: A longitudinal, non-experimental study was conducted in a Level 3 neonatal intensive care unit using a convenience sample of 88 preterm infants. Statistical analyses were performed using a repeated-measures mixed-model in SAS. Results: Sucking activity (number of sucks, sucks/burst, and sucks/ minute) was predicted by morbidity, maturity, feeding experience and prefeeding behavior state. Experience at oral feeding had the greatest effect on changes in the number of sucks, suck/burst and sucks/minute. Conclusion: Experience at feeding may result in more rapid maturation of sucking characteristics

    Neo-lymphoid aggregates in the adult liver can initiate potent cell-mediated immunity

    Get PDF
    Subcutaneous immunization delivers antigen (Ag) to local Ag-presenting cells that subsequently migrate into draining lymph nodes (LNs). There, they initiate the activation and expansion of lymphocytes specific for their cognate Ag. In mammals, the structural environment of secondary lymphoid tissues (SLTs) is considered essential for the initiation of adaptive immunity. Nevertheless, cold-blooded vertebrates can initiate potent systemic immune responses even though they lack conventional SLTs. The emergence of lymph nodes provided mammals with drastically improved affinity maturation of B cells. Here, we combine the use of different strains of alymphoplastic mice and T cell migration mutants with an experimental paradigm in which the site of Ag delivery is distant from the site of priming and inflammation. We demonstrate that in mammals, SLTs serve primarily B cell priming and affinity maturation, whereas the induction of T cell-driven immune responses can occur outside of SLTs. We found that mice lacking conventional SLTs generate productive systemic CD4- as well as CD8-mediated responses, even under conditions in which draining LNs are considered compulsory for the initiation of adaptive immunity. We describe an alternative pathway for the induction of cell-mediated immunity (CMI), in which Ag-presenting cells sample Ag and migrate into the liver where they induce neo-lymphoid aggregates. These structures are insufficient to support antibody affinity maturation and class switching, but provide a novel surrogate environment for the initiation of CMI
    corecore