1,442 research outputs found

    N=8 superconformal gauge theories and M2 branes

    Get PDF
    Based on recent developments, in this letter we find 2+1 dimensional gauge theories with scale invariance and N=8 supersymmetry. The gauge theories are defined by a Lagrangian and are based on an infinite set of 3-algebras, constructed as an extension of ordinary Lie algebras. Recent no-go theorems on the existence of 3-algebras are circumvented by relaxing the assumption that the invariant metric is positive definite. The gauge group is non compact, and its maximally compact subgroup can be chosen to be any ordinary Lie group, under which the matter fields are adjoints or singlets. The theories are parity invariant and do not admit any tunable coupling constant. In the case of SU(N) the moduli space of vacua contains a branch of the form (R^8)^N/S_N. These properties are expected for the field theory living on a stack of M2 branes.Comment: 14 pages, no figure

    3D integrated superconducting qubits

    Get PDF
    As the field of superconducting quantum computing advances from the few-qubit stage to larger-scale processors, qubit addressability and extensibility will necessitate the use of 3D integration and packaging. While 3D integration is well-developed for commercial electronics, relatively little work has been performed to determine its compatibility with high-coherence solid-state qubits. Of particular concern, qubit coherence times can be suppressed by the requisite processing steps and close proximity of another chip. In this work, we use a flip-chip process to bond a chip with superconducting flux qubits to another chip containing structures for qubit readout and control. We demonstrate that high qubit coherence (T1T_1, T2,echo>20 μT_{2,\rm{echo}} > 20\,\mus) is maintained in a flip-chip geometry in the presence of galvanic, capacitive, and inductive coupling between the chips

    Real Time Electron Tunneling and Pulse Spectroscopy in Carbon Nanotube Quantum Dots

    Full text link
    We investigate a Quantum Dot (QD) in a Carbon Nanotube (CNT) in the regime where the QD is nearly isolated from the leads. An aluminum single electron transistor (SET) serves as a charge detector for the QD. We precisely measure and tune the tunnel rates into the QD in the range between 1 kHz and 1 Hz, using both pulse spectroscopy and real - time charge detection and measure the excitation spectrum of the isolated QD.Comment: 12 pages, 5 figure

    Influence of a Feshbach resonance on the photoassociation of LiCs

    Full text link
    We analyse the formation of ultracold 7Li133Cs molecules in the rovibrational ground state through photoassociation into the B1Pi state, which has recently been reported [J. Deiglmayr et al., Phys. Rev. Lett. 101, 133004 (2008)]. Absolute rate constants for photoassociation at large detunings from the atomic asymptote are determined and are found to be surprisingly large. The photoassociation process is modeled using a full coupled-channel calculation for the continuum state, taking all relevant hyperfine states into account. The enhancement of the photoassociation rate is found to be caused by an `echo' of the triplet component in the singlet component of the scattering wave function at the inner turning point of the lowest triplet a3Sigma+ potential. This perturbation can be ascribed to the existence of a broad Feshbach resonance at low scattering energies. Our results elucidate the important role of couplings in the scattering wave function for the formation of deeply bound ground state molecules via photoassociation.Comment: Added Erratum, 20 pages, 9 figure

    Conditional statistics of electron transport in interacting nanoscale conductors

    Full text link
    Interactions between nanoscale semiconductor structures form the basis for charge detectors in the solid state. Recent experimental advances have demonstrated the on-chip detection of single electron transport through a quantum dot (QD). The discreteness of charge in units of e leads to intrinsic fluctuations in the electrical current, known as shot noise. To measure these single-electron fluctuations a nearby coherent conductor, called a quantum point contact (QPC), interacts with the QD and acts as a detector. An important property of the QPC charge detector is noninvasiveness: the system physically affects the detector, not visa-versa. Here we predict that even for ideal noninvasive detectors such as the QPC, when a particular detector result is observed, the system suffers an informational backaction, radically altering the statistics of transport through the QD as compared to the unconditional shot noise. We develop a theoretical model to make predictions about the joint current probability distributions and conditional transport statistics. The experimental findings reported here demonstrate the reality of informational backaction in nanoscale systems as well as a variety of new effects, such as conditional noise enhancement, which are in essentially perfect agreement with our model calculations. This type of switching telegraph process occurs abundantly in nature, indicating that these results are applicable to a wide variety of systems.Comment: 16 pages, 3 figures, to appear in Nature Physic

    Beyond the Planar Limit in ABJM

    Get PDF
    In this article we consider gauge theories with a U(N)X U(N) gauge group. We provide, for the first time, a complete set of operators built from scalar fields that are in the bi fundamental of the two groups. Our operators diagonalize the two point function of the free field theory at all orders in 1/N. We then use this basis to investigate non-planar anomalous dimensions in the ABJM theory. We show that the dilatation operator reduces to a set of decoupled harmonic oscillators, signaling integrability in a nonplanar large N limit.Comment: v2: minor revisison

    On the structure of k-Lie algebras

    Full text link
    We show that the structure constants of kk-Lie algebras, k>3k>3, with a positive definite metric are the sum of the volume forms of orthogonal kk-planes. This generalizes the result for k=3k=3 in arXiv:0804.2662 and arXiv:0804.3078, and confirms a conjecture in math/0211170.Comment: 4 pages, minor changes and a reference adde

    Higher Derivative BLG: Lagrangian and Supersymmetry Transformations

    Full text link
    Working to lowest non-trivial order in fermions, we consider the four-derivative order corrected Lagrangian and supersymmetry transformations of the Euclidean Bagger-Lambert-Gustavsson theory. By demonstrating supersymmetric invariance of the Lagrangian we determine all numerical coefficients in the system. In addition, the supersymmetry algebra is shown to close on the scalar and gauge fields. We also comment on the extension to Lorentzian and other non-Euclidean N=8\mathcal{N}=8 3-algebra theories.Comment: 23 page

    Fabrication and mechanical testing of a new sandwich structure with carbon fiber network core

    Get PDF
    The aim is the fabrication and mechanical testing of sandwich structures including a new core material known as fiber network sandwich materials. As fabrication norms for such a material do not exist as such, so the primary goal is to reproduce successfully fiber network sandwich specimens. Enhanced vibration testing diagnoses the quality of the fabrication process. These sandwich materials possess low structural strength as proved by the static tests (compression, bending), but the vibration test results give high damping values, making the material suitable for vibro-acoustic applications where structural strength is of secondary importance e.g., internal panelling of a helicopter
    • …
    corecore