22 research outputs found

    Bounding of Flow and Transport Analysis in Heterogeneous Saturated Porous Media: A Minimum Energy Dissipation Principle for the Bounding and Scale-Up

    No full text
    We apply minimum kinetic energy principles from classic mechanics to heterogeneous porous media flow equations to derive and evaluate rotational flow components to determine bounding homogenous representations. Kelvin characterized irrotational motions in terms of energy dissipation and showed that minimum dynamic energy dissipation occurs if the motion is irrotational; i.e., a homogeneous flow system. For porous media flow, reductions in rotational flow represent heterogeneity reductions. At the limit, a homogeneous system, flow is irrotational. Using these principles, we can find a homogenous system that bounds a more complex heterogeneous system. We present mathematics for using the minimum energy principle to describe flow in heterogeneous porous media along with reduced special cases with the necessary bounding and associated scale-up equations. The first, simple derivation involves no boundary differences and gives results based on direct Kelvin-type minimum energy principles. It provides bounding criteria, but yields only a single ultimate scale-up. We present an extended derivation that considers differing boundaries, which may occur between scale-up elements. This approach enables a piecewise less heterogeneous representation to bound the more heterogeneous system. It provides scale-up flexibility for individual model elements with differing sizes, and shapes and supports a more accurate representation of material properties. We include a case study to illustrate bounding with a single direct scale-up. The case study demonstrates rigorous bounding and provides insight on using bounding flow to help understand heterogeneous systems. This work provides a theoretical basis for developing bounding models of flow systems. This provides a means to justify bounding conditions and results

    An Empirical Mode-Spatial Model for Environmental Data Imputation

    No full text
    Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes

    Phosphorus Distribution in Delta Sediments: A Unique Data Set from Deer Creek Reservoir

    No full text
    Recently, Deer Creek Reservoir (DCR) underwent a large drawdown to support dam reconstruction. This event exposed sediments inundated by the reservoir, since dam completion in the early 1940s. This event allowed us to take sediment data samples and evaluate them for phosphorous (P) content. It is difficult for normal reservoir sediment studies to have sediment samples at high spatial resolution because of access. During the drawdown, we collected 91 samples on a grid 100 m in one direction and 200 m in the other. This grid defined an area of approximately 750,000 m2 (185 acre). We took both surface samples, and at some sites, vertical samples. We determined water soluble P for all the samples, and P in four other reservoirs or fractions for 19 samples. Results showed water soluble P in the range of 2.28 × 10−3 to 9.81 × 10−3, KCl-P from 2.53 × 10−3 to 1.10 × 10−2, NaOH-P from 5.30 × 10−2 to 4.60 × 10−1, HCl-P from 1.28 × 10−1 to 1.34, and residual (mostly organic) P from 8.23 × 10−1 to 3.23 mg/g. We provide this data set to the community to support and encourage research in this area. We hope this data set will be used and analyzed to support other research efforts

    Measuring and Calculating Current Atmospheric Phosphorous and Nitrogen Loadings to Utah Lake Using Field Samples and Geostatistical Analysis

    No full text
    Atmospheric nutrient loading through wet and dry deposition is one of the least understood, yet can be one of the most important, pathways of nutrient transport into lakes and reservoirs. Nutrients, specifically phosphorus and nitrogen, are essential for aquatic life but in excess can cause accelerated algae growth and eutrophication and can be a major factor that causes harmful algal blooms (HABs) that occur in lakes and reservoirs. Utah Lake is subject to eutrophication and HABs. It is susceptible to atmospheric deposition due to its large surface area to volume ratio, high phosphorous levels in local soils, and proximity to Great Basin dust sources. In this study we collected and analyzed eight months of atmospheric deposition data from five locations near Utah Lake. Our data showed that atmospheric deposition to Utah Lake over the 8-month period was between 8 to 350 Mg (metric tonne) of total phosphorus and 46 to 460 Mg of dissolved inorganic nitrogen. This large range is based on which samples were used in the estimate with the larger numbers including results from “contaminated samples”. These nutrient loading values are significant for Utah Lake in that it has been estimated that only about 17 Mg year−1 of phosphorus and about 200 Mg year−1 of nitrogen are needed to support a eutrophic level of algal growth. We found that atmospheric deposition is a major contributor to the eutrophic nutrient load of Utah Lake

    Characterizing Total Phosphorus in Current and Geologic Utah Lake Sediments: Implications for Water Quality Management Issues

    No full text
    Utah Lake is highly eutrophic with large phosphorous inflows and a large internal phosphorous reservoir in the sediment. There are debates over whether this phosphorous is from geologic or more recent anthropologic sources. This study characterizes total phosphorous in geologic and current lake sediments to attempt to address that question. The average total phosphorous concentrations in the lake sediment were 666 ppm, with most samples in the 600 to 800 ppm range with a few larger values. Concentrations in historic geologic sediments were not statistically different from lake sediments. A spatial analysis showed that phosphorous distributions appeared continuous from the lake to the shore and that high and low values could be attributed to areas of seeps and springs (low) or feed lots and waste water discharge (high). These results indicate that geologic sediments without anthropogenic impacts are not statistically different than current lake sediments. The high values indicate that internal natural phosphorous loadings could be significant and the impaired state may be relatively insensitive to external anthropogenic loadings. If this is the case, then mitigation efforts to address anthropogenic sources may have minimal impacts. This case study presents an impaired water body where non-anthropogenic nutrient sources are significant and shows that reservoir management decisions should consider these non-anthropogenic phosphorous sources relative to anthropogenic sources. This study can serve as a template for evaluating the importance of geologic phosphorous sources for management decisions

    Insights into Efficient Irrigation of Urban Landscapes: Analysis Using Remote Sensing, Parcel Data, Water Use, and Tiered Rates

    No full text
    To understand how landscape irrigation can be better managed, we selected two urban irrigation systems in northern Utah, USA, and performed a statistical analysis of relationships among water use, irrigated area, plant health (based on the Normalized Difference Vegetation Index), and water rate structures across thousands of parcels. Our approach combined remote sensing with 4-band imagery and on-site measurements from water meters. We present five key findings that can lead to more efficient irrigation practices. First, tiered water rates result in less water use when compared to flat water rates for comparable plant health. Second, plant health does not strictly increase with water application but has an optimum point beyond which further watering is not beneficial. Third, many water users irrigate beyond this optimum point, suggesting that there is water conservation potential without loss of aesthetics. Fourth, irrigation is not the only contributor to plant health, and other factors need more attention in research and in water conservation programs. Fifth, smaller irrigated areas correlate with higher water application rates, an observation that may inform future land use decisions. These findings are especially pertinent in responding to the current drought in the western United States
    corecore