1,041 research outputs found

    The equation of state of a partly homogenized plasma of low-dense porous matter

    Full text link
    The equation of state (EOS) of a low-density porous substance plasma is proposed in the form of continuous media EOS containing, as a pressure control parameter, the degree of plasma homogenization, which is function of the initial porous structure, as well as of the current values of plasma density and temperature. Using the partially-homogenized-plasma EOS an approximate analytical solution is found and numerical calculations were performed of the problem of thermal expansion of a flat layer of porous matter. The features of the obtained results are discussed in comparison with the case of a continuous substance of equivalent chemical composition. The proposed equation of state is used to analyze the experimental data on porous substance heating with laser and X-ray pulses.Comment: 20 pages, 4 figure

    Verification and Improvement of Flamelet Approach for Non-Premixed Flames

    Get PDF
    Studies in the mathematical modeling of the high-speed turbulent combustion has received renewal attention in the recent years. The review of fundamentals, approaches and extensive bibliography was presented by Bray, Libbi and Williams. In order to obtain accurate predictions for turbulent combustible flows, the effects of turbulent fluctuations on the chemical source terms should be taken into account. The averaging of chemical source terms requires to utilize probability density function (PDF) model. There are two main approaches which are dominant in high-speed combustion modeling now. In the first approach, PDF form is assumed based on intuitia of modelliers (see, for example, Spiegler et.al.; Girimaji; Baurle et.al.). The second way is much more elaborate and it is based on the solution of evolution equation for PDF. This approach was proposed by S.Pope for incompressible flames. Recently, it was modified for modeling of compressible flames in studies of Farschi; Hsu; Hsu, Raji, Norris; Eifer, Kollman. But its realization in CFD is extremely expensive in computations due to large multidimensionality of PDF evolution equation (Baurle, Hsu, Hassan)

    Flamelet Model Application for Non-Premixed Turbulent Combustion

    Get PDF
    The current Final Report contains results of the study which was performed in Scientific Research Center 'ECOLEN' (Moscow, Russia). The study concerns the development and verification of non-expensive approach for modeling of supersonic turbulent diffusion flames based on flamelet consideration of the chemistry/turbulence interaction (FL approach). Research work included: development of the approach and CFD tests of the flamelet model for supersonic jet flames; development of the simplified procedure for solution of the flamelet equations based on partial equilibrium chemistry assumption; study of the flame ignition/extinction predictions provided by flamelet model. The performed investigation demonstrated that FL approach allowed to describe satisfactory main features of supersonic H 2/air jet flames. Model demonstrated also high capabilities for reduction of the computational expenses in CFD modeling of the supersonic flames taking into account detailed oxidation chemistry. However, some disadvantages and restrictions of the existing version of approach were found in this study. They were: (1) inaccuracy in predictions of the passive scalar statistics by our turbulence model for one of the considered test cases; and (2) applicability of the available version of the flamelet model to flames without large ignition delay distance only. Based on the results of the performed investigation, we formulated and submitted to the National Aeronautics and Space Administration our Project Proposal for the next step research directed toward further improvement of the FL approach

    Comparison of Geant4 hadron generation with data from the interactions with beryllium nuclei of +8.9 GeV/c protons and pions, and of -8 GeV/c pions

    Get PDF
    Hadron generation in the Geant4 simulation tool kit is compared with inclusive spectra of secondary protons and pions from the interactions with beryllium nuclei of +8.9 GeV/c protons and pions, and of -8.0 GeV/c pions. The data were taken in 2002 at the CERN Proton Synchrotron with the HARP spectrometer. We report on significant disagreements between data and simulated data especially in the polar-angle distributions of secondary protons and pions.Comment: 15 pages, 13 figure

    Pion Polarizability in the NJL model and Possibilities of its Experimental Studies in Coulomb Nuclear Scattering

    Full text link
    The charge pion polarizability is calculated in the Nambu-Jona-Lasinio model, where the quark loops (in the mean field approximation) and the meson loops (in the 1/Nc1/N_c approximation) are taken into account. We show that quark loop contribution dominates, because the meson loops strongly conceal each other. The sigma-pole contribution (mσ2t)1(m^2_\sigma-t)^{-1} plays the main role and contains strong t-dependence of the effective pion polarizability at the region t4Mπ2|t|\geq 4M_\pi^2. Possibilities of experimental test of this sigma-pole effect in the reaction of Coulomb Nuclear Scattering are estimated for the COMPASS experiment.Comment: 11 pages, 8 figure

    Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions V: Lead Nuclei and Beam Momenta from +/-3 Gev/c to +/-15 Gev/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary lead target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles 20 to 125 degrees. Cross-sections on lead nuclei are compared with cross-sections on beryllium, copper, and tantalum nuclei.Comment: 67 pages, 13 figures, 47 table

    Cross-Sections of Large-Angle Hadron Production in Proton- and Pion-Nucleus Interactions III: Tantalum Nuclei and Beam Momenta from +/-3 Gev/c to +/-15 Gev/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary tantalum target, of proton and pion beams with momentum from +/-3 GeV/c to +/-15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. They are of particular relevance for the optimization of the design parameters of the proton driver of a neutrino factory.Comment: 68 pages, 12 figures, corrections in v2: added 'HARP -CDP group' to author name, corrected two typos in Table 4 (last two p values for 65-90 degrees were all 0.972

    Cross-sections of large-angle hadron production in proton-- and pion--nucleus interactions VIII: aluminium nuclei and beam momenta from {\pm}3 GeV/c to {\pm}15 GeV/c

    Get PDF
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% {\lambda}int thick stationary aluminium target, of proton and pion beams with momentum from \pm3 GeV/c to \pm15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on aluminium nuclei are compared with cross-sections on beryllium, carbon, copper, tin, tantalum and lead nuclei.Comment: 71 pages, 16 figures, 47 table

    Cross-sections of large-angle hadron production in proton- and pion-nucleus interactions VI: carbon nuclei and beam momenta from \pm 3 GeV/c to \pm 15 GeV/c

    Full text link
    We report on double-differential inclusive cross-sections of the production of secondary protons, charged pions, and deuterons, in the interactions with a 5% nuclear interaction length thick stationary carbon target, of proton and pion beams with momentum from \pm 3 GeV/c to \pm 15 GeV/c. Results are given for secondary particles with production angles between 20 and 125 degrees. Cross-sections on carbon nuclei are compared with cross-sections on beryllium, copper, tantalum and lead nuclei.Comment: 67 pages, 13 figure
    corecore