585 research outputs found

    Influences of neutron star parameters on evolutions of different types of pulsar; evolutions of anomalous X-ray pulsars, soft gamma repeaters and dim isolated thermal neutron stars on the P-\.{P} diagram

    Full text link
    Influences of the mass, moment of inertia, rotation, absence of stability in the atmosphere and some other parameters of neutron stars on the evolution of pulsars are examined. It is shown that the locations and evolutions of soft gamma repeaters, anomalous X-ray pulsars and other types of pulsar on the period versus period derivative diagram can be explained adopting values of B<1014<10^{14} G for these objects. This approach gives the possibility to explain many properties of different types of pulsar.Comment: 18 pages, 1 figur

    Effects of the background radiation on radio pulsar and supernova remnant searches and the birth rates of these objects

    Full text link
    In different directions of the Galaxy the Galactic background radio radiation and radiation of complex star formation regions which include large number of OB associations have different influences on radio pulsar (PSR) and supernova remnant (SNR) searches. In this work we analyse the effects of these background radiations on the observations of PSRs at 1400 MHz and SNRs at 1000 MHz. In the interval l=0o^o±60o\pm60^o the PSRs with flux F1400_{1400}>>0.2 mJy and the SNRs with surface brightness Σ\Sigma>10−21>10^{-21} Wm−2^{-2}Hz−1^{-1}sr−1^{-1} are observable for all values of l and b. All the SNRs with Σ\Sigma>3×10−22>3\times10^{-22} Wm−2^{-2}Hz−1^{-1}sr−1^{-1} can be observed in the interval 60o^o<<l<300o<300^o. We have examined samples of PSRs and SNRs to estimate the birth rates of these objects in the region up to 3.2 kpc from the Sun and also in the Galaxy. The birth rate of PSRs is about one in 200 years and the birth rate of SNRs is about one in 65 years in our galaxy.Comment: revised versio

    Sturm-Liouville operators on time scales

    Full text link
    We establish the connection between Sturm-Liouville equations on time scales and Sturm--Liouville equations with measure-valued coefficients. Based on this connection we generalize several results for Sturm-Liouville equations on time scales which have been obtained by various authors in the past.Comment: 12 page

    Hard X-Ray flux upper limits of central compact objects in supernova remnants

    Get PDF
    We searched for hard X-ray (20–300 keV) emission from nine central compact objects (CCOs) 1E 1207.4−5209, 1WGA J1713−3949, J082157.5−430017, J085201.4−461753, J1601−5133, J1613483−5055, J181852.0−150213, J185238.6+004020, and J232327.9+584843 with the INTEGRAL observatory. We applied spectral imaging analysis and did not detect any of the sources with luminosity upper limits in the range of 1033-1034 ergs/s in the 20-75 keV band. For nearby CCOs (< 4 kpc) the upper limit luminosities are an order of magnitude lower than the measured persistent hard X-ray luminosities of AXPs. This may indicate that the central compact objects are low magnetic field systems with fallback disks around them

    Nanotransformation and current fluctuations in exciton condensate junctions

    Full text link
    We analyze the nonlinear transport properties of a bilayer exciton condensate that is contacted by four metallic leads by calculating the full counting statistics of electron transport for arbitrary system parameters. Despite its formal similarity to a superconductor the transport properties of the exciton condensate turn out to be completely different. We recover the generic features of exciton condensates such as counterpropagating currents driven by excitonic Andreev reflections and make predictions for nonlinear transconductance between the layers as well as for the current (cross)correlations and generalized Johnson-Nyquist relationships. Finally, we explore the possibility of connecting another mesoscopic system (in our case a quantum point contact) to the bottom layer of the exciton condensate and show how the excitonic Andreev reflections can be used for transforming voltage at the nanoscale.Comment: 5 pages, 4 figures, accepted by PR

    An integrable discretization of KdV at large times

    Full text link
    An "exact discretization" of the Schroedinger operator is considered and its direct and inverse scattering problems are solved. It is shown that a differential-difference nonlinear evolution equation depending on two arbitrary constants can be solved by using this spectral transform and that for a special choice of the constants it can be considered an integrable discretization of the KdV equation at large times. An integrable difference-difference equation is also obtained.Comment: 12 page
    • …
    corecore