4 research outputs found

    Dynamical Characterization and Room-Temperature Control of an Optically Addressable Single Spin in Hexagonal Boron Nitride

    Full text link
    Hexagonal boron nitride (h-BN), a wide bandgap, two-dimensional solid-state material, hosts pure single-photon emitters that have shown signatures of optically-addressable electronic spins. Here, we report on a single emitter in h-BN exhibiting optically detected magnetic resonance at room temperature, and we propose a model for its electronic structure and optical dynamics. Using photon emission correlation spectroscopy in conjunction with time-domain optical and microwave experiments, we establish key features of the emitter's electronic structure. Specifically, we propose a model that includes a spinless optical ground and excited state, a metastable spin-1/2 configuration, and an emission modulation mechanism. Using optical and spin dynamics simulations, we constrain and quantify transition rates in the model, and we design protocols that optimize the signal-to-noise ratio for spin readout. This constitutes a necessary step toward quantum control of spin states in h-BN.Comment: 14 pages, 15 figures. arXiv admin note: text overlap with arXiv:2201.0888

    Probing the Optical Dynamics of Quantum Emitters in Hexagonal Boron Nitride

    Full text link
    Hexagonal boron nitride is a van der Waals material that hosts visible-wavelength quantum emitters at room temperature. However, experimental identification of the quantum emitters' electronic structure is lacking, and key details of their charge and spin properties remain unknown. Here, we probe the optical dynamics of quantum emitters in hexagonal boron nitride using photon emission correlation spectroscopy. Several quantum emitters exhibit ideal single-photon emission with noise-limited photon antibunching, g(2)(0)=0g^{(2)}(0)=0. The photoluminescence emission lineshapes are consistent with individual vibronic transitions. However, polarization-resolved excitation and emission suggests the role of multiple optical transitions, and photon emission correlation spectroscopy reveals complicated optical dynamics associated with excitation and relaxation through multiple electronic excited states. We compare the experimental results to quantitative optical dynamics simulations, develop electronic structure models that are consistent with the observations, and discuss the results in the context of ab initio theoretical calculations.Comment: 31 pages, 16 figures, 6 table

    The NANOGrav 12.5 yr Data Set: Observations and narrowband timing of 47 millisecond pulsars

    No full text
    We present time-of-arrival (TOA) measurements and timing models of 47 millisecond pulsars observed from 2004 to 2017 at the Arecibo Observatory and the Green Bank Telescope by the North American Nanohertz Observatory for Gravitational Waves (NANOGrav). The observing cadence was three to four weeks for most pulsars over most of this time span, with weekly observations of six sources. These data were collected for use in low-frequency gravitational wave searches and for other astrophysical purposes. We detail our observational methods and present a set of TOA measurements, based on "narrowband"analysis, in which many TOAs are calculated within narrow radio-frequency bands for data collected simultaneously across a wide bandwidth. A separate set of "wideband"TOAs will be presented in a companion paper. We detail a number of methodological changes, compared to our previous work, which yield a cleaner and more uniformly processed data set. Our timing models include several new astrometric and binary pulsar measurements, including previously unpublished values for the parallaxes of PSRs J1832-0836 and J2322+2057, the secular derivatives of the projected semimajor orbital axes of PSRs J0613-0200 and J2229+2643, and the first detection of the Shapiro delay in PSR J2145-0750. We report detectable levels of red noise in the time series for 14 pulsars. As a check on timing model reliability, we investigate the stability of astrometric parameters across data sets of different lengths. We also report flux density measurements for all pulsars observed. Searches for stochastic and continuous gravitational waves using these data will be subjects of forthcoming publications

    The NANOGrav 12.5 yr Data Set: Wideband Timing of 47 Millisecond Pulsars

    No full text
    We present a new analysis of the profile data from the 47 millisecond pulsars comprising the 12.5 yr data set of the North American Nanohertz Observatory for Gravitational Waves, which is presented in a parallel paper (Alam et al., hereafter NG12.5). Our reprocessing is performed using "wideband"timing methods, which use frequency-dependent template profiles, simultaneous time-of-arrival (TOA) and dispersion measure (DM) measurements from broadband observations, and novel analysis techniques. In particular, the wideband DM measurements are used to constrain the DM portion of the timing model. We compare the ensemble timing results to those in NG12.5 by examining the timing residuals, timing models, and noise-model components. There is a remarkable level of agreement across all metrics considered. Our best-timed pulsars produce encouragingly similar results to those from NG12.5. In certain cases, such as high-DM pulsars with profile broadening or sources that are weak and scintillating, wideband timing techniques prove to be beneficial, leading to more precise timing model parameters by 10%-15%. The high-precision, multiband measurements of several pulsars indicate frequency-dependent DMs. Compared to the narrowband analysis in NG12.5, the TOA volume is reduced by a factor of 33, which may ultimately facilitate computational speed-ups for complex pulsar timing array analyses. This first wideband pulsar timing data set is a stepping stone, and its consistent results with NG12.5 assure us that such data sets are appropriate for gravitational wave analyses
    corecore