18 research outputs found

    On spin-rotation contribution to nuclear spin conversion in C_{3v}-symmetry molecules. Application to CH_3F

    Get PDF
    The symmetrized contribution of E-type spin-rotation interaction to conversion between spin modifications of E- and A_1-types in molecules with C_{3v}-symmetry is considered. Using the high-J descending of collisional broadening for accidental rotational resonances between these spin modifications, it was possible to co-ordinate the theoretical description of the conversion with (updated) experimental data for two carbon-substituted isotopes of fluoromethane. As a result, both E-type spin-rotation constants are obtained. They are roughly one and a half times more than the corresponding constants for (deutero)methane.Comment: 13 pages with single-spacing, REVTeX, no figures, accepted for publication in <J. Phys. B

    Coherent control of nuclear spin isomers of molecules: The role of molecular motion

    Get PDF
    Molecular center-of-mass motion is taken into account in the theory of coherent control of nuclear spin isomers of molecules. It is shown that infrared radiation resonant to the molecular rovibrational transition can substantially enrich nuclear spin isomers and speed up their conversion rate.Comment: REVTEX, 13 pages + 3 eps figure

    How inorganic electrical insulating materials are used in reactors

    No full text

    Laser absorption and energy transfer in foams of various pore structures and chemical compositions

    No full text
    Interaction of sub-nanosecond intense laser pulses with foams containing fine and large pores has been studied experimentally. Laser penetration and energy transport in the foam material are measured via streaked side-on x-ray slit images. Shock wave transition through the foam is detected via streaked optical self-emission from foil attached on the foam rear side. The shock transition time increases with the pore size, foam density, and also with the contents of high Z additions in plastic foams. Foil acceleration is observed via 3-frame interferometry. Comparison of experimental results with numerical simulations and an analytical model is underway

    Magnetized plasma implosion in a snail target driven by a moderateintensity laser pulse

    Get PDF
    Optical generation of compact magnetized plasma structures is studied in the moderate intensity domain. A sub-ns laser beam irradiated snail-shaped targets with the intensity of about 10(16) W/cm(2). With a neat optical diagnostics, a sub-megagauss magnetized plasmoid is traced inside the target. On the observed hydrodynamic time scale, the hot plasma formation achieves a theta-pinch-like density and magnetic field distribution, which implodes into the target interior. This simple and elegant plasma magnetization scheme in the moderate-intensity domain is of particular interest for fundamental astrophysical-related studies and for development of future technologies © The Author(s) 201
    corecore