278 research outputs found

    Why is d-wave pairing in HTS robust in the presence of impurities?

    Full text link
    In the recent theory of strong correlations by Kulic and Zeyher it has been shown that by lowering doping concentration a forward peak in the charge scattering channel is developed. Accordingly, near the optimal doping the nonmagnetic scattering is pronounced in the d-channel and its effect on d-wave pairing is reduced. As a consequence, d-wave pairing is robust against defects and impurities, the order parameter keeps its d-wave shape for any scattering rate and the density of states becomes finite at the Fermi surface. For large doping scattering anisotropy parameter is small and d-wave loses its robustness. The theory is generally formulated for the bi-layer model by including: 1) intra- and inter-plane pairing; 2) intra- and inter-plane impurities.Comment: Complete revision, 4 pages with 2 PS figures, RevTeX, submitted to Phys. Rev. Let

    Resistivity saturation revisited: results from a dynamical mean field theory

    Full text link
    We use the dynamical mean field method to study the high-temperature resistivity of electrons strongly coupled to phonons. The results reproduce the qualtiative behavior of the temperature and disorder dependence of the resistivity of the 'A-15' materials, which is commonly described in terms of saturation, but imply that the resistivity does not saturate. Rather, a change in temperature dependence occurs when the scattering becomes strong enough to cause a breakdown of the Migdal approximation.Comment: Minor revisions in response to referee report; latex error corrected so paper prints properl

    New insight into the physics of iron pnictides from optical and penetration depth data

    Full text link
    We report theoretical values for the unscreened plasma frequencies Omega_p of several Fe pnictides obtained from DFT based calculations within the LDA and compare them with experimental plasma frequencies obtained from reflectivity data. The sizable renormalization observed for all considered compounds points to the presence of many-body effects beyond the LDA. From the large empirical background dielectric constant of about 12-15, we estimate a large arsenic polarizability of about 9.5 +- 1.2 Angstroem^3 where the details depend on the polarizabilities of the remaining ions taken from the literature. This large polarizability can significantly reduce the value of the Coulomb repulsion U_d about 4 eV on iron known from iron oxides to a level of 2 eV or below. In general, this result points to rather strong polaronic effects as suggested by G.A. Sawatzky et al., in Refs. arXiv:0808.1390 and arXiv:0811.0214 (Berciu et al.). Possible consequences for the conditions of a formation of bipolarons are discussed, too. From the extrapolated muon spin rotation penetration depth data at T= 0 and the experimental Omega_p we estimate the total coupling constant lambda_tot for the el-boson interaction within the Eliashberg-theory adopting a single band approximation. For LaFeAsO_0.9F_0.1 a weak to intermediately strong coupling regime and a quasi-clean limit behaviour are found. For a pronounced multiband case we obtain a constraint for various intraband coupling constants which in principle allows for a sizable strong coupling in bands with either slow electrons or holes.Comment: 34 pages, 10 figures, submitted to New Journal of Physics (30.01.2009

    Image of the Energy Gap Anisotropy in the Vibrational Spectum of a High Temperature Superconductor

    Full text link
    We present a new method of determining the anisotropy of the gap function in layered high-Tc superconductors. Careful inelastic neutron scattering measurements at low temperature of the phonon dispersion curves in the (100) direction in La_(1.85)Sr_(.15)CuO_4 would determine whether the gap is predominately s-wave or d-wave. We also propose an experiment to determine the gap at each point on a quasi-two-dimensional Fermi surface.Comment: 12 pages + 2 figures (included

    Correlation between the residual resistance ratio and magnetoresistance in MgB2

    Full text link
    The resistivity and magnetoresistance in the normal state for bulk and thin-film MgB2 with different nominal compositions have been studied systematically. These samples show different temperature dependences of normal state resistivity and residual resistance ratios although their superconducting transition temperatures are nearly the same, except for the thin-film sample. The correlation between the residual resistance ratio (RRR) and the power law dependence of the low temperature resistivity, rho vs. T^c, indicates that the electron-phonon interaction is important. It is found that the magnetoresistance (MR) in the normal state scales well with the RRR, a0(MR) proportional to (RRR)^2.2 +/- 0.1 at 50 K. This accounts for the large difference in magnetoresistance reported by various groups, due to different defect scatterings in the samples.Comment: 10 pages, 3 figures, submitted to Phys. Rev. B (July 6, 2001; revised September 27, 2001); discussion of the need for excess Mg in processing and of the power law dependence of the low temperature resistivity added in response to referee's comment

    Many-body Effects in Angle-resolved Photoemission: Quasiparticle Energy and Lifetime of a Mo(110) Surface State

    Full text link
    In a high-resolution photoemission study of a Mo(110) surface state various contributions to the measured width and energy of the quasiparticle peak are investigated. Electron-phonon coupling, electron-electron interactions and scattering from defects are all identified mechanisms responsible for the finite lifetime of a valence photo-hole. The electron-phonon induced mass enhancement and rapid change of the photo-hole lifetime near the Fermi level are observed for the first time.Comment: RevTEX, 4 pages, 4 figures, to be published in PR

    Change of the Ground State upon Hole Doping Unveiled by Ni Impurity in High-TcT_{\rm c} Cuprates

    Full text link
    The electronic ground state in high-TcT_{\rm c} cuprates where the superconducting state is suppressed by Ni substitution has been investigated in La2x_{2-x}Srx_xCu1y_{1-y}Niy_yO4_4 from the specific heat and muon spin relaxation measurements. It has been found that the ground state changes from a magnetically ordered state with the strong hole-trapping by Ni to a metallic state with the Kondo effect of Ni with increasing hole-concentration. Moreover, the analysis of the results has revealed that a phase separation into the magnetically ordered phase and the metallic phase occurs around the boundary of two phases.Comment: 11pages, 4 figure

    Spin-gap effect on resistivity in the t-J model

    Full text link
    We calculate the spin-gap effect on dc resistivity in the t-J model of high-TcT_{\rm c} cuprates by using the Ginzburg-Landau theory coupled with a gauge field as its effective field theory to get ρ(T)T{1c(TT)d}\rho(T) \propto T \{1-c\:(T^* -T)^d \}, where TT^* is the spin-gap onset temperature. By taking the compactness of massive gauge field into account, the exponent dd deviates from its mean-field value 1/2 and becomes a nonuniversal TT-dependent quantity, which improves the correspondence with the experiments.Comment: 4 pages, REVTeX format, 2 eps-figure

    Marginal Fermi liquid analysis of 300 K reflectance of Bi2Sr2CaCu2O8+x

    Full text link
    We use 300 K reflectance data to investigate the normal-state electrodynamics of the high temperature superconductor Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} over a wide range of doping levels. The data show that at this temperature the free carriers are coupled to a continuous spectrum of fluctuations. Assuming the Marginal Fermi Liquid (MFL) form as a first approximation for the fluctuation spectrum, the doping-dependent coupling constant λ(p)\lambda (p) can be estimated directly from the slope of the reflectance spectrum. We find that λ(p)\lambda (p) decreases smoothly with the hole doping level, from underdoped samples with p=0.103 p=0.103 (Tc=67T_c = 67 K) where λ(p)=0.93\lambda (p)= 0.93 to overdoped samples with p=0.226p=0.226, (Tc=60T_c= 60 K) where λ(p)=0.53\lambda(p)= 0.53. An analysis of the intercept and curvature of the reflectance spectrum shows deviations from the MFL spectrum symmetrically placed at the optimal doping point p=0.16p=0.16. The Kubo formula for the conductivity gives a better fit to the experiments with the MFL spectrum up to 2000 cm1^{-1} and with an additional Drude component or an additional Lorentz component up to 7000 cm1^{-1}. By comparing three different model fits we conclude that the MFL channel is necessary for a good fit to the reflectance data. Finally, we note that the monotonic variation of the reflectance slope with doping provides us with an independent measure of the doping level for the Bi-2212 system.Comment: 11 pages, 11 figure

    Saturation of electrical resistivity

    Full text link
    Resistivity saturation is observed in many metallic systems with a large resistivity, i.e., when the resistivity has reached a critical value, its further increase with temperature is substantially reduced. This typically happens when the apparent mean free path is comparable to the interatomic separations - the Ioffe-Regel condition. Recently, several exceptions to this rule have been found. Here, we review experimental results and early theories of resistivity saturation. We then describe more recent theoretical work, addressing cases both where the Ioffe-Regel condition is satisfied and where it is violated. In particular we show how the (semiclassical) Ioffe-Regel condition can be derived quantum-mechanically under certain assumptions about the system and why these assumptions are violated for high-Tc cuprates and alkali-doped fullerides.Comment: 16 pages, RevTeX, 15 eps figures, additional material available at http://www.mpi-stuttgart.mpg.de/andersen/saturation
    corecore