32 research outputs found

    Using B4C nanoparticles to enhance thermal and mechanical response of aluminum

    Get PDF
    In this work, Al-B4C nanocomposites were produced by microwave sintering and followed by hot extrusion processes. The influence of ceramic reinforcement (B4C) nanoparticles on the physical, microstructural, mechanical, and thermal characteristics of the extruded Al-B4C nanocomposites was investigated. It was observed that the density decreased and porosity increased with an increase in B4C content in aluminum matrix. The porosity of the composites increased whereas density decreased with increasing B4C content. Electron microscopy analysis reveals the uniform distribution of B4C nanoparticles in the Al matrix. Mechanical characterization results revealed that hardness, elastic modulus, compression, and tensile strengths increased whereas ductility decreases with increasing B4C content. Al-1.0 vol. % B4C nanocomposite exhibited best hardness (135.56 Hv), Young's modulus (88.63 GPa), and compression/tensile strength (524.67/194.41 MPa) among the materials investigated. Further, coefficient of thermal expansion (CTE) of composites gradually decreased with an increase in B4C content.Scopu

    Improving mechanical, thermal and damping properties of niti (Nitinol) reinforced aluminum nanocomposites

    Get PDF
    In the present study, Ni50Ti50 (NiTi) particle reinforced aluminum nanocomposites were fabricated using microwave sintering and subsequently hot extrusion. The effect of NiTi (0, 0.5, 1.0, and 1.5 vol %) content on the microstructural, mechanical, thermal, and damping properties of the extruded Al-NiTi nanocomposites was studied. Compared to the unreinforced aluminum, hardness, ultimate compression/tensile strength and yield strength increased by 105%, 46%, 45%, and 41% while elongation and coefficient of thermal expansion (CTE) decreased by 49% and 22%, respectively. The fabricated Al-1.5 NiTi nanocomposite exhibited significantly higher damping capacity (3.23 × 10−4) and elastic modulus (78.48 ± 0.008 GPa) when compared to pure Al.Scopu

    DEVELOPMENT OF ECO-MAGNESIUM ALLOY/COMPOSITES TARGETING STRUCTURAL/BIOMEDICAL APPLICATIONS

    No full text
    Ph.DDOCTOR OF PHILOSOPHY (FOE

    Effect of Varying Hot Extrusion Temperatures on the Properties of a Sinterless Turning Induced Deformation Processed Eco-Friendly Mg-Zn-Ca Alloy

    No full text
    In this work, Mg-4Zn-1Ca (wt. %) alloy was primarily processed by disintegrated melt deposition. The resulting ingots were further pre-processed by the turning induced deformation technique (TID), and the turnings were subsequently consolidated by the hot extrusion process and sinterless powder metallurgy. A range of extrusion temperatures (200, 250 and 300 °C) was tested to understand the effect of the extrusion temperature on tailoring the microstructure and properties of TID-processed Mg-4Zn-1Ca (wt. %) alloys. The results indicated that the combined effect of TID and extrusion temperature plays a significant role in grain refinement, specifically at 200 °C. Overall, the sample extruded at 300 °C showed the best microhardness and compressive yield strength values. The resistance to ignition and wet corrosion increased and decreased, respectively, when the extrusion temperature was increased. Variations of basal texture and fine grain strengthening due to variations of extrusion temperature led to different properties peaking at different extrusion temperatures. Microstructure-property relationships are therefore discussed, highlighting that different extrusion temperatures have characteristic effects in improving and lowering the properties. Many of the investigated properties of TID-processed alloys exceed that of commercial Mg alloys, suggesting the capability of the sinterless TID technique to develop as an economical industrial way of recycling and manufacturing magnesium-based materials

    Comparison of Shallow (−20 °C) and Deep Cryogenic Treatment (−196 °C) to Enhance the Properties of a Mg/2wt.%CeO<sub>2</sub> Nanocomposite

    No full text
    Magnesium and its composites have been used in various applications owing to their high specific strength properties and low density. However, the application is limited to room-temperature conditions owing to the lack of research available on the ability of magnesium alloys to perform in sub-zero conditions. The present study attempted, for the first time, the effects of two cryogenic temperatures (−20 °C/253 K and −196 °C/77 K) on the physical, thermal, and mechanical properties of a Mg/2wt.%CeO2 nanocomposite. The materials were synthesized using the disintegrated melt deposition method followed by hot extrusion. The results revealed that the shallow cryogenically treated (refrigerated at −20 °C) samples display a reduction in porosity, lower ignition resistance, similar microhardness, compressive yield, and ultimate strength and failure strain when compared to deep cryogenically treated samples in liquid nitrogen at −196 °C. Although deep cryogenically treated samples showed an overall edge, the extent of the increase in properties may not be justified, as samples exposed at −20 °C display very similar mechanical properties, thus reducing the overall cost of the cryogenic process. The results were compared with the data available in the open literature, and the mechanisms behind the improvement of the properties were evaluated

    Enhancing the Hardness and Compressive Response of Magnesium Using Complex Composition Alloy Reinforcement

    No full text
    The present study reports the development of new magnesium composites containing complex composition alloy (CCA) particles. Materials were synthesized using a powder metallurgy route incorporating hybrid microwave sintering and hot extrusion. The presence and variation in the amount of ball-milled CCA particles (2.5 wt %, 5 wt %, and 7.5 wt %) in a magnesium matrix and their effect on the microstructure and mechanical properties of Mg-CCA composites were investigated. The use of CCA particle reinforcement effectively led to a significant matrix grain refinement. Uniformly distributed CCA particles were observed in the microstructure of the composites. The refined microstructure coupled with the intrinsically high hardness of CCA particles (406 HV) contributed to the superior mechanical properties of the Mg-CCA composites. A microhardness of 80 HV was achieved in a Mg-7.5HEA (high entropy alloy) composite, which is 1.7 times higher than that of pure Mg. A significant improvement in compressive yield strength (63%) and ultimate compressive strength (79%) in the Mg-7.5CCA composite was achieved when compared to that of pure Mg while maintaining the same ductility level. When compared to ball-milled amorphous particle-reinforced and ceramic-particle-reinforced Mg composites, higher yield and compressive strengths in Mg-CCA composites were achieved at a similar ductility level
    corecore