67 research outputs found
Position Paper on Road Map for RNA Virus Research in India
The Indian subcontinent with its population density, climatic conditions, means of subsistence, socioeconomic factors as well as travel and tourism presents a fertile ground for thriving of RNA viruses. Despite being pathogens of huge significance, there is very little focus on research into the biology and pathogenesis of RNA viruses in India. Studies on epidemiology and disease burden, risk factors, the immune response to RNA viruses, circulating virus strains and virus evolution, animal models of disease, antivirals and vaccines are strikingly absent. Emerging RNA viruses such as Zika virus, Nipah virus and Crimean-Congo haemorrhagic fever virus are a matter of grave concern to India. Here we summarize the outcome of the India|EMBO symposium on “RNA viruses: immunology, pathogenesis and translational opportunities” organized at Faridabad, National Capital Region, India, on March 28–30, 2018. The meeting focused on RNA viruses (non-HIV), and both national and international experts on RNA viruses covered topics ranging from epidemiology, immune response, virus evolution and vaccine trials concerning RNA viruses. The aim of the symposium was to create a road map for RNA virus research in India. Both concrete and tentative ideas pointing towards short-term and long-term goals were presented with recommendations for follow-up at government level
Dengue virus capsid interacts with DDX3X-a potential mechanism for suppression of antiviral functions in dengue infection
Dengue virus is a pathogen of global concern and has a huge impact on public health
system in low- and middle-income countries. The capsid protein of dengue virus is
least conserved among related flavivirus and there is very limited information on the
role of cytosolic proteins that interact with dengue virus capsid. We identified DEAD
(Asp-Glu-Ala-Asp) Box Helicase 3, an X-Linked (DDX3X), cytosolic ATP-dependent RNA
helicase as a dengue virus capsid-interacting protein. We show that the N-terminal region
of capsid is important for interaction with DDX3X, while the N-terminal domain of DDX3X
seems to be involved in interaction with dengue capsid. DDX3X was down-regulated in
dengue virus infected cells at later stages of infection. Our results show that DDX3X is
an antiviral protein as suppression of DDX3X expression by siRNA led to an increase in
viral titers and overexpression of DDX3X led to inhibition of viral replication. Knock-down
of DDX3X did not affect induction of type I interferon response upon infection suggesting
that the effect of DDX3X knock-down is independent of the interferon-dependent
pathways that DDX3X modulates under normal conditions. Thus, our study identifies
DDX3X as a dengue virus capsid interacting protein and indicates a potential link between
the antiviral functions of DDX3X and dengue capsid at later stages of dengue infection
Role of human GRP75 in miRNA mediated regulation of dengue virus replication
In recent times, RNAi has emerged as an important defence system that regulates replication of pathogens in host cells. Many RNAi related host factors especially the host miRNAs play important roles in all intrinsic cellular functions, including viral infection. We have been working on identification of mammalian host factors involved in Dengue virus infection. In the present study, we identified Glucose Regulated Protein 75kDa (GRP75), as a host factor that is associated with dicer complex, in particular with HADHA (trifunctional enzyme subunit alpha, mitochondrial), an auxiliary component of dicer complex. Knockdown of GRP75 by respective siRNAs in Huh-7 cells resulted in the accumulation of dengue viral genomic RNA suggesting a role of GRP75 in regulating dengue virus replication in human cell lines. To elucidate the mode of action of GRP75, we over expressed the protein in Huh-7 cells and analysed the host miRNAs processing. The results revealed that, GRP75 is involved in processing of host miRNA, hsa-mir-126, that down regulates dengue virus replication. These findings suggest a regulatory role of human miRNA pathway especially GRP75 protein and hsa-mir-126 in dengue virus replication. These results thus provide insights into the role of miRNAs and RNAi machinery in dengue life cycle
Role of RNA interference (RNAi) in dengue virus replication and identification of NS4B as an RNAi suppressor
RNA interference (RNAi) is an important antiviral defense response in plants and invertebrates; however, evidences for its contribution to mammalian antiviral defense are few. In the present study, we demonstrate the anti-dengue virus role of RNAi in mammalian cells. Dengue virus infection of Huh 7 cells decreased the mRNA levels of host RNAi factors, namely, Dicer, Drosha, Ago1, and Ago2, and in corollary, silencing of these genes in virus-infected cells enhanced dengue virus replication. In addition, we observed downregulation of many known human microRNAs (miRNAs) in response to viral infection. Using reversion-of-silencing assays, we further showed that NS4B of all four dengue virus serotypes is a potent RNAi suppressor. We generated a series of deletion mutants and demonstrated that NS4B mediates RNAi suppression via its middle and C-terminal domains, namely, transmembrane domain 3 (TMD3) and TMD5. Importantly, the NS4B N-terminal region, including the signal sequence 2K, which has been implicated in interferon (IFN)-antagonistic properties, was not involved in mediating RNAi suppressor activity. Site-directed mutagenesis of conserved residues revealed that a Phe-to-Ala (F112A) mutation in the TMD3 region resulted in a significant reduction of the RNAi suppression activity. The green fluorescent protein (GFP)-small interfering RNA (siRNA) biogenesis of the GFP-silenced line was considerably reduced by wild-type NS4B, while the F112A mutant abrogated this reduction. These results were further confirmed by in vitro dicer assays. Together, our results suggest the involvement of miRNA/RNAi pathways in dengue virus establishment and that dengue virus NS4B protein plays an important role in the modulation of the host RNAi/miRNA pathway to favor dengue virus replication
Image_1_Position Paper on Road Map for RNA Virus Research in India.PDF
<p>The Indian subcontinent with its population density, climatic conditions, means of subsistence, socioeconomic factors as well as travel and tourism presents a fertile ground for thriving of RNA viruses. Despite being pathogens of huge significance, there is very little focus on research into the biology and pathogenesis of RNA viruses in India. Studies on epidemiology and disease burden, risk factors, the immune response to RNA viruses, circulating virus strains and virus evolution, animal models of disease, antivirals and vaccines are strikingly absent. Emerging RNA viruses such as Zika virus, Nipah virus and Crimean-Congo haemorrhagic fever virus are a matter of grave concern to India. Here we summarize the outcome of the India|EMBO symposium on “RNA viruses: immunology, pathogenesis and translational opportunities” organized at Faridabad, National Capital Region, India, on March 28–30, 2018. The meeting focused on RNA viruses (non-HIV), and both national and international experts on RNA viruses covered topics ranging from epidemiology, immune response, virus evolution and vaccine trials concerning RNA viruses. The aim of the symposium was to create a road map for RNA virus research in India. Both concrete and tentative ideas pointing towards short-term and long-term goals were presented with recommendations for follow-up at government level.</p
JEV capsid alone alters permeability barrier functions.
<p>(A) Lysates were prepared from two caco-2 clones expressing JEV-C and analyzed by western blot for expression of JEV-C (anti-His antibody) or β-actin. (B) TER was measured in caco-2 capsid clones grown on trans-wells as described above. (C) <b>%</b> TER levels in the indicated cells at day 7 post-seeding is shown. (D) Control or JEV-C caco-2 clones were incubated with soluble fluorescein and the amount of fluorescein passing from apical to basolateral side was measured as described in materials and methods. (E) Caco-2 and capsid clone-19 cells were infected with JEV (5 pfu/cell) and supernatants were collected at indicated time post-infection. Viral titer in the supernatant was measured by plaque assay. The figures are representative of two experiments performed with three replicates. Error bars indicate mean ± s.d. *** p<0.0001 and ** p<0.002 as determined by two-tailed t-test.</p
West Nile Virus Entry Requires Cholesterol-Rich Membrane Microdomains and Is Independent of αvβ3 Integrinâ–ż â€
West Nile virus (WNV) has been the leading cause of viral encephalitis in the United States since 1999. The endocytic processes involved in the internalization of infectious WNV by various cell types are not well characterized, and the involvement of cholesterol-rich membrane microdomains, or lipid rafts, in the life cycle of WNV has not been investigated previously. In this study, we found that the depletion of cellular cholesterol levels by brief treatment with methyl-β-cyclodextrin resulted in a 100-fold reduction of the titers of infectious WNV released into the culture supernatant, as well as a reduction in the number of WNV genome copies in the cholesterol-depleted cells. The addition of exogenous cholesterol to cholesterol-depleted cells reversed this effect. Cholesterol depletion postinfection did not affect WNV growth, suggesting that the effect occurs at the level of WNV entry. We also showed that while WNV entry did not require αvβ3 integrin and focal adhesion kinase, WNV particles failed to be internalized by cholesterol-depleted cells. Finally, we showed the colocalization of the WNV envelope protein and cholera toxin B, which is internalized in a lipid raft-dependent pathway, in microdomain clusters at the plasma membrane. These data suggest that WNV utilizes lipid rafts during initial stages of internalization and that the lipid rafts may contain a factor(s) that may enhance WNV endocytosis
Japanese Encephalitis Virus Disrupts Cell-Cell Junctions and Affects the Epithelial Permeability Barrier Functions
<div><p>Japanese encephalitis virus (JEV) is a neurotropic flavivirus, which causes viral encephalitis leading to death in about 20–30% of severely-infected people. Although JEV is known to be a neurotropic virus its replication in non-neuronal cells in peripheral tissues is likely to play a key role in viral dissemination and pathogenesis. We have investigated the effect of JEV infection on cellular junctions in a number of non-neuronal cells. We show that JEV affects the permeability barrier functions in polarized epithelial cells at later stages of infection. The levels of some of the tight and adherens junction proteins were reduced in epithelial and endothelial cells and also in hepatocytes. Despite the induction of antiviral response, barrier disruption was not mediated by secreted factors from the infected cells. Localization of tight junction protein claudin-1 was severely perturbed in JEV-infected cells and claudin-1 partially colocalized with JEV in intracellular compartments and targeted for lysosomal degradation. Expression of JEV-capsid alone significantly affected the permeability barrier functions in these cells. Our results suggest that JEV infection modulates cellular junctions in non-neuronal cells and compromises the permeability barrier of epithelial and endothelial cells which may play a role in viral dissemination in peripheral tissues.</p></div
Inhibition of JEV replication blocks permeability barrier disruption.
<p>(A) Cells grown on trans-well inserts were infected with JEV with an MOI of 5 pfu/cell and treated with 20 µM Bisp-W at 1 h post-infection. Viral titer in the apical and basolateral media was measured by plaque assay after two days post-infection. (B) TER was measured from cells grown on trans-wells and infected and treated as above.</p
JEV infection alters the localization of claudin-1.
<p>Caco-2 cells grown on trans-wells were infected with JEV and at 42 h p.i. cells were fixed and stained for JEV and claudin-1 as described in materials and methods. Marked area in the merge image is shown separately to demonstrate the colocalization of claudin-1 and JEV-E.</p
- …