10 research outputs found

    Identification of membrane-type 1 matrix metalloproteinase tyrosine phosphorylation in association with neuroblastoma progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Neuroblastoma is a pediatric tumor of neural crest cells that is clinically characterized by its variable evolution, from spontaneous regression to malignancy. Despite many advances in neuroblastoma research, 60% of neuroblastoma, which are essentially metastatic cases, are associated with poor clinical outcome due to the lack of effectiveness of current therapeutic strategies. Membrane-type 1 matrix metalloproteinase (MT1-MMP, MMP-14), an enzyme involved in several steps in tumor progression, has previously been shown to be associated with poor clinical outcome for neuroblastoma. Based on our recent demonstration that MT1-MMP phosphorylation is involved in the growth of fibrosarcoma tumors, we examined the potential role of phosphorylated MT1-MMP in neuroblastoma progression.</p> <p>Methods</p> <p>Tyrosine phosphorylated MT1-MMP was immunostained on tissue microarray samples from 55 patients with neuroblastoma detected by mass screening (known to be predominantly associated with favourable outcome), and from 234 patients with standard diagnosed neuroblastoma. In addition, the effects of a non phosphorylable version of MT1-MMP on neuroblastoma cell migration and proliferation were investigated within three-dimensional collagen matrices.</p> <p>Results</p> <p>Although there is no correlation between the extent of tyrosine phosphorylation of MT1-MMP (pMT1-MMP) and MYCN amplification or clinical stage, we observed greater phosphorylation of pMT1-MMP in standard neuroblastoma, while it is less evident in neuroblastoma from mass screening samples (P = 0.0006) or in neuroblastoma samples from patients younger than one year (P = 0.0002). <it>In vitro </it>experiments showed that overexpression of a non-phosphorylable version of MT1-MMP reduced MT1-MMP-mediated neuroblastoma cell migration and proliferation within a three-dimensional type I collagen matrix, suggesting a role for the phosphorylated enzyme in the invasive properties of neuroblastoma cells.</p> <p>Conclusion</p> <p>Overall, these results suggest that tyrosine phosphorylated MT1-MMP plays an important role in neuroblastoma progression and that its expression is preferentially observed in tumor specimens from neuroblastoma patients showing poor clinical outcome.</p

    Acellular Hemoglobin-Based Oxygen Carrier Mediated Blood Pressure Elevation and Vasoconstriction: A Review of Proposed Mechanisms and Contributing Factors

    No full text

    Gene Therapy in the Nervous System: Failures and Successes

    No full text
    Genetic disorders, caused by deleterious changes in the DNA sequence away from the normal genomic sequence, affect millions of people worldwide. Gene therapy as a treatment option for patients is an attractive proposition due to its conceptual simplicity. In principle, gene therapy involves correcting the genetic disorder by either restoring a normal functioning copy of a gene or reducing the toxicity arising from a mutated gene. In this way specific genetic function can be restored without altering the expression of other genes and the proteins they encode. The reality however is much more complex, and as a result the vector systems used to deliver gene therapies have by necessity continued to evolve and improve over time with respect to safety profile, efficiency, and long-term expression. In this chapter we examine the current approaches to gene therapy, assess the different gene delivery systems utilized, and highlight the failures and successes of relevant clinical trials. We do not intend for this chapter to be a comprehensive and exhaustive assessment of all clinical trials that have been conducted in the CNS, but instead will focus on specific diseases that have seen successes and failures with different gene therapy vehicles to gauge how preclinical models have informed the design of clinical trials

    Über die (aseptische) Harnstauungsniere

    No full text
    corecore