18 research outputs found

    Making Waves in the Brain: What Are Oscillations, and Why Modulating Them Makes Sense for Brain Injury.

    Get PDF
    Traumatic brain injury (TBI) can result in persistent cognitive, behavioral and emotional deficits. However, the vast majority of patients are not chronically hospitalized; rather they have to manage their disabilities once they are discharged to home. Promoting recovery to pre-injury level is important from a patient care as well as a societal perspective. Electrical neuromodulation is one approach that has shown promise in alleviating symptoms associated with neurological disorders such as in Parkinson's disease (PD) and epilepsy. Consistent with this perspective, both animal and clinical studies have revealed that TBI alters physiological oscillatory rhythms. More recently several studies demonstrated that low frequency stimulation improves cognitive outcome in models of TBI. Specifically, stimulation of the septohippocampal circuit in the theta frequency entrained oscillations and improved spatial learning following TBI. In order to evaluate the potential of electrical deep brain stimulation for clinical translation we review the basic neurophysiology of oscillations, their role in cognition and how they are changed post-TBI. Furthermore, we highlight several factors for future pre-clinical and clinical studies to consider, with the hope that it will promote a hypothesis driven approach to subsequent experimental designs and ultimately successful translation to improve outcome in patients with TBI

    Moderate and severe TBI in children and adolescents: The effects of age, sex, and injury severity on patient outcome 6 months after injury

    No full text
    The interaction of age, sex, and outcomes of children with head injury remains incompletely understood and these factors need rigorous evaluation in prognostic models for pediatric head injury. We leveraged our large institutional pediatric TBI population to evaluate age and sex along with a series of predictive factors used in the acute care of injury to describe the response and outcome of children and adolescents with moderate to severe injury. We hypothesized that younger age at injury and male sex would be associated with adverse outcomes and that a novel GCS-based scale incorporating pupillary response (GCS-P) would have superior performance in predicting 6-month outcome. GCS and GCS-P along with established CT scan variables associated with neurologic outcomes were retrospectively reviewed in children (age birth to 18 years) with moderate or severe head injury. GOS-E was prospectively collected 6 months after injury; 570 patients were enrolled in the study, 520 with TBI and 50 with abusive head trauma, each analyzed separately. In the TBI cohort, the median age of patients was 8 years and 42.7% had a severe head injury. Multiple predictors of outcome were identified in univariate analysis; however, based on a multivariate analysis, the GCS was identified as most reliable, outperforming GCS-P, pupil score, and other clinical and CT scan predictors. After stratifying patients for severity of injury by GCS, no age- or sex-related effects were observed in our patient population, except for a trend toward worse outcomes in the neonatal group. Patients with abusive head trauma were more likely to have severe injury on presentation, increased mortality rate, and unfavorable outcome. Additionally, there was clear evidence that secondary injuries, including hypoxia, hypotension, and hypothermia were significantly associated with lower GCS and higher mortality in both AHT and TBI populations. Our findings support the use of GCS to guide clinical decision-making and prognostication in addition to emphasizing the need to stratify head injuries for severity when undertaking outcome studies. Finally, secondary injuries are a clear predictor of poor outcome and how we record and manage these events need to be considered moving forward

    Intracerebroventricular opiate infusion for refractory head and facial pain.

    No full text
    AimTo study the risks and benefits of intracerebroventricular (ICV) opiate pumps for the management of benign head and face pain.MethodsSSix patients with refractory trigeminal neuralgia and/or cluster headaches were evaluated for implantation of an ICV opiate infusion pump using either ICV injections through an Ommaya reservoir or external ventricular drain. Four patients received morphine ICV pumps and two patientS received a hydromorphone pump. Of the Four patients with morphine ICV pumps, one patient had the medication changed to hydromorphone. Preoperative and post-operative visual analog scores (VAS) were obtained. Patients were evaluated post-operatively for a minimum of 3 mo and the pump dosage was adjusted at each outpatient clinic visit according to the patient's pain level.ResultsAll 6 patients had an intracerebroventricular opiate injection trial period, using either an Ommaya reservoir or an external ventricular drain. There was an average VAS improvement of 75.8%. During the trial period, no complications were observed. Pump implantation was performed an average of 3.7 wk (range 1-7) after the trial injections. After implantation, an average of 20.7 ± 8.3 dose adjustments were made over 3-56 mo after surgery to achieve maximal pain relief. At the most recent follow-up (26.2 mo, range 3-56), VAS scores significantly improved from an average of 7.8 ± 0.5 (range 6-10) to 2.8 ± 0.7 (range 0-5) at the final dose (mean improvement 5.0 ± 1.0, P < 0.001). All patients required a stepwise increase in opiate infusion rates to achieve maximal benefit. The most common complications were nausea and drowsiness, both of which resolved with pump adjustments. On average, infusion pumps were replaced every 4-5 years.ConclusionThese results suggest that ICV delivery of opiates may potentially be a viable treatment option for patients with intractable pain from trigeminal neuralgia or cluster headache

    Septohippocampal Neuromodulation Improves Cognition after Traumatic Brain Injury

    No full text
    Traumatic brain injury (TBI) often results in persistent attention and memory deficits that are associated with hippocampal dysfunction. Although deep brain stimulation (DBS) is used to treat neurological disorders related to motor dysfunction, the effectiveness of stimulation to treat cognition remains largely unknown. In this study, adult male Harlan Sprague-Dawley rats underwent a lateral fluid percussion or sham injury followed by implantation of bipolar electrodes in the medial septal nucleus (MSN) and ipsilateral hippocampus. In the first week after injury, there was a significant decrease in hippocampal theta oscillations that correlated with decreased object exploration and impaired performance in the Barnes maze spatial learning task. Continuous 7.7 Hz theta stimulation of the medial septum significantly increased hippocampal theta oscillations, restored normal object exploration, and improved spatial learning in injured animals. There were no benefits with 100 Hz gamma stimulation, and stimulation of sham animals at either frequency did not enhance performance. We conclude, therefore, that there was a theta frequency-specific benefit of DBS that restored cognitive function in brain-injured rats. These data suggest that septal theta stimulation may be an effective and novel neuromodulatory therapy for treatment of persistent cognitive deficits following TBI
    corecore