76 research outputs found

    Embryonic Stem Cell Bioprinting for Uniform and Controlled Size Embryoid Body Formation

    Get PDF
    Embryonic stem cells ESCs are pluripotent with multilineage potential to differentiate into virtually all cell types in the organism and thus hold a great promise for cell therapy and regenerative medicine. In vitro differentiation of ESCs starts with a phase known as embryoid body EB formation. EB mimics the early stages of embryogenesis and plays an essential role in ESC differentiation in vitro. EB uniformity and size are critical parameters that directly influence the phenotype expression of ESCs. Various methods have been developed to form EBs, which involve natural aggregation of cells. However, challenges persist to form EBs with controlled size, shape, and uniformity in a reproducible manner. The current hanging-drop methods are labor intensive and time consuming. In this study, we report an approach to form controllable, uniform-sized EBs by integrating bioprinting technologies with the existing hanging-drop method. The approach presented here is simple, robust, and rapid. We present significantly enhanced EB size uniformity compared to the conventional manual hanging-drop method

    Transport of a Soft Cargo on a Nanoscale Ratchet

    Get PDF

    A Retrospective Case Study of Successful Translational Research: Gazelle Hb Variant Point-of-Care Diagnostic Device for Sickle Cell Disease

    Get PDF
    Evaluation researchers at Clinical and Translational Science Award (CTSA) hubs are conducting retrospective case studies to evaluate the translational research process. The objective of this study was to deepen knowledge of the translational process and identify contributors to successful translation. We investigated the successful translation of the HemeChip, a low-cost point-of-care diagnostic device for sickle cell disease, using a protocol for retrospective translational science case studies of health interventions developed by evaluators at the National Health Institutes (NIH) and CTSA hubs. Development of the HemeChip began in 2013 and evidence of device use and impact on public health is growing. Data collection methods included five interviews and a review of press, publications, patents, and grants. Barriers to translation included proving novelty, manufacturing costs, fundraising, and academic-industry relations. Facilitators to translation were CTSA pilot program funding, university resources, entrepreneurship training, due diligence, and collaborations. The barriers to translation, how they were overcome, and the key facilitators identified in this case study pinpoint areas for consideration in future funding mechanisms and the infrastructure required to enable successful translation

    PUM1 Mediates the Posttranscriptional Regulation of Human Fetal Hemoglobin

    Get PDF
    The fetal-to-adult hemoglobin switching at about the time of birth involves a shift in expression from γ-globin to β-globin in erythroid cells. Effective re-expression of fetal γ-globin can ameliorate sickle cell anemia and β-thalassemia. Despite the physiological and clinical relevance of this switch, its posttranscriptional regulation is poorly understood. Here, we identify Pumilo 1 (PUM1), an RNA-binding protein with no previously reported functions in erythropoiesis, as a direct posttranscriptional regulator of β-globin switching. PUM1, whose expression is regulated by the erythroid master transcription factor erythroid Krüppel-like factor (EKLF/KLF1), peaks during erythroid differentiation, binds γ-globin messenger RNA (mRNA), and reduces γ-globin (HBG1) mRNA stability and translational efficiency, which culminates in reduced γ-globin protein levels. Knockdown of PUM1 leads to a robust increase in fetal hemoglobin (∼22% HbF) without affecting β-globin levels in human erythroid cells. Importantly, targeting PUM1 does not limit the progression of erythropoiesis, which provides a potentially safe and effective treatment strategy for sickle cell anemia and β-thalassemia. In support of this idea, we report elevated levels of HbF in the absence of anemia in an individual with a novel heterozygous PUM1 mutation in the RNA-binding domain (p.(His1090Profs∗16); c.3267_3270delTCAC), which suggests that PUM1-mediated posttranscriptional regulation is a critical player during human hemoglobin switching

    Hydrogen gas sensing using aluminum doped ZnO metasurface

    Full text link
    Hydrogen sensing is crucial in a wide variety of areas, such as industrial, environmental, energy and biomedical applications. However, engineering a practical, reliable, fast, sensitive and cost-effective hydrogen sensor, is a persistent challenge. Here we demonstrate hydrogen sensing using aluminum-doped zinc oxide (AZO) metasurfaces based on optical read-out. The proposed sensing system consists of highly ordered AZO nanotubes (hollow pillars) standing on a SiO2 layer deposited on a Si wafer. Upon exposure to hydrogen gas, the AZO nanotube system shows a wavelength shift in the minimum reflectance by 13 nm within 10 minutes for a hydrogen concentration of 4%. These AZO nanotubes can also sense the presence of a low concentration (0.7 %) of hydrogen gas within 10 minutes. Its rapid response time even for low concentration, the possibility of large sensing area fabrication with good precision, and high sensitivity at room temperature make these highly ordered nanotube structures a promising miniaturized H2 gas sensor.Comment: 15 pages, 6 figure

    Efficient onchip isolation of HIV subtypes,"

    Get PDF
    HIV has caused a global pandemic over the last three decades. There is an unmet need to develop pointof-care (POC) viral load diagnostics to initiate and monitor antiretroviral treatment in resourceconstrained settings. Particularly, geographical distribution of HIV subtypes poses significant challenges for POC immunoassays. Here, we demonstrated a microfluidic device that can effectively capture various subtypes of HIV particles through anti-gp120 antibodies, which were immobilized on the microchannel surface. We first optimized an antibody immobilization process using fluorescent antibodies, quantum dot staining and AFM studies. The results showed that anti-gp120 antibodies were immobilized on the microchannel surface with an elevated antibody density and uniform antibody orientation using a Protein G-based surface chemistry. Further, RT-qPCR analysis showed that HIV particles of subtypes A, B and C were captured repeatably with high efficiencies of 77.2 AE 13.2%, 82.1 AE 18.8, and 80.9 AE 14.0% from culture supernatant, and 73.2 AE 13.6, 74.4 AE 14.6 and 78.3 AE 13.3% from spiked whole blood at a viral load of 1000 copies per mL, respectively. HIV particles of subtypes A, B and C were captured with high efficiencies of 81.8 AE 9.4%, 72.5 AE 18.7, and 87.8 AE 3.2% from culture supernatant, and 74.6 AE 12.9, 75.5 AE 6.7 and 69.7 AE 9.5% from spiked whole blood at a viral load of 10 000 copies per mL, respectively. The presented immuno-sensing device enables the development of POC on-chip technologies to monitor viral load and guide antiretroviral treatment (ART) in resourceconstrained settings

    OcclusionChip: A Functional Microcapillary Occlusion Assay Complementary to Ektacytometry for Detection of Small-Fraction Red Blood Cells with Abnormal Deformability

    Get PDF
    Red blood cell (RBC) deformability is a valuable hemorheological biomarker that can be used to assess the clinical status and response to therapy of individuals with sickle cell disease (SCD). RBC deformability has been measured by ektacytometry for decades, which uses shear or osmolar stress. However, ektacytometry is a population based measurement that does not detect small-fractions of abnormal RBCs. A single cell-based, functional RBC deformability assay would complement ektacytometry and provide additional information. Here, we tested the relative merits of the OcclusionChip, which measures RBC deformability by microcapillary occlusion, and ektacytometry. We tested samples containing glutaraldehyde-stiffened RBCs for up to 1% volume fraction; ektacytometry detected no significant change in Elongation Index (EI), while the OcclusionChip showed significant differences in Occlusion Index (OI). OcclusionChip detected a significant increase in OI in RBCs from an individual with sickle cell trait (SCT) and from a subject with SCD who received allogeneic hematopoietic stem cell transplant (HSCT), as the sample was taken from normoxic (pO2:159 mmHg) to physiologic hypoxic (pO2:45 mmHg) conditions. Oxygen gradient ektacytometry detected no difference in EI for SCT or HSCT. These results suggest that the single cell-based OcclusionChip enables detection of sickle hemoglobin (HbS)-related RBC abnormalities in SCT and SCD, particularly when the HbS level is low. We conclude that the OcclusionChip is complementary to the population based ektacytometry assays, and providing additional sensitivity and capacity to detect modest abnormalities in red cell function or small populations of abnormal red cells

    Catch Bonds in Sickle Cell Disease: Shear-Enhanced Adhesion of Red Blood Cells to Laminin

    Get PDF
    Could the phenomenon of catch bonding—force-strengthened cellular adhesion—play a role in sickle cell disease, where abnormal red blood cell (RBC) adhesion obstructs blood flow? Here we investigate the dynamics of sickle RBCs adhering to a surface functionalized with the protein laminin (a component of the extracellular matrix around blood vessels) under physiologically relevant micro-scale flow. First, using total internal reflectance microscopy we characterize the spatial fluctuations of the RBC membrane above the laminin surface before detachment. The complex dynamics we observe suggest the possibility of catch bonding, where the mean detachment time of the cell from the surface initially increases to a maximum and then decreases as a function of shear force. We next conduct a series of shear-induced detachment experiments on blood samples from 25 sickle cell disease patients, quantifying the number and duration of adhered cells under both sudden force jumps and linear force ramps. The experiments reveal that a subset of patients does indeed exhibit catch bonding. By fitting the data to a theoretical model of the bond dynamics, we can extract the mean bond lifetime versus force for each patient. The results show a striking heterogeneity among patients, both in terms of the qualitative behavior (whether or not there is catch bonding) and in the magnitudes of the lifetimes. Patients with large bond lifetimes at physiological forces are more likely to have certain adverse clinical features, like a diagnosis of pulmonary arterial hypertension and intracardiac shunts. By introducing an in vitro platform for fully characterizing RBC-laminin adhesion dynamics, our approach could contribute to the development of patient-specific anti-adhesive therapies for sickle cell disease. The experimental setup is also easily generalizable to studying adhesion dynamics in other cell types, for example leukocytes or cancer cells, and can incorporate disease-relevant environmental conditions like oxygen deprivation

    Sickle Red Blood Cell-Derived Extracellular Vesicles Activate Endothelial Cells and Enhance Sickle Red Cell Adhesion Mediated by von Willebrand Factor

    Get PDF
    Endothelial activation and sickle red blood cell (RBC) adhesion are central to the pathogenesis of sickle cell disease (SCD). Quantitatively, RBC-derived extracellular vesicles (REVs) are more abundant from SS RBCs compared with healthy RBCs (AA RBCs). Sickle RBC-derived REVs (SS REVs) are known to promote endothelial cell (EC) activation through cell signalling and transcriptional regulation at longer terms. However, the SS REV-mediated short-term non-transcriptional response of EC is unclear. Here, we examined the impact of SS REVs on acute microvascular EC activation and RBC adhesion at 2 h. Compared with AA REVs, SS REVs promoted human pulmonary microvascular ECs (HPMEC) activation indicated by increased von Willebrand factor (VWF) expression. Under microfluidic conditions, we found abnormal SS RBC adhesion to HPMECs exposed to SS REVs. This enhanced SS RBC adhesion was reduced by haeme binding protein haemopexin or VWF cleaving protease ADAMTS13 to a level similar to HPMECs treated with AA REVs. Consistent with these observations, haemin- or SS REV-induced microvascular stasis in SS mice with implanted dorsal skin-fold chambers that was inhibited by ADAMTS13. The adhesion induced by SS REVs was variable and was higher with SS RBCs from patients with increased markers of haemolysis (lactate dehydrogenase and reticulocyte count) or a concomitant clinical diagnosis of deep vein thrombosis. Our results emphasise the critical contribution made by REVs to the pathophysiology of SCD by triggering acute microvascular EC activation and abnormal RBC adhesion. These findings may help to better understand acute pathophysiological mechanism of SCD and thereby the development of new treatment strategies using VWF as a potential target
    • …
    corecore