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Surface ratchets can guide droplet transport for microfluidic systems. Here, we demonstrated the

actuation of microgels encapsulated in droplets using a unidirectional nanotextured surface, which

moves droplets with low vibration amplitudes by a ratcheting mechanism. The nanofilm carries

droplets along the ratchets with minimal drop shape deformation to move the encapsulated soft

cargo, i.e., microscale hydrogels. The tilted nanorods of the nanofilm produce unidirectional

wetting, thereby enabling droplet motion in a single direction. Maximum droplet translation speed

on the nanofilm was determined to be 3.5 mm/s, which offers a pathway towards high throughput

microgel assembly applications to build complex constructs. VC 2011 American Institute of Physics.

[doi:10.1063/1.3625430]

Digital microfluidics1 uses droplets to manipulate con-

trolled volumes and chemical compositions. Various mecha-

nisms for actuation of droplets have been proposed, such as

capillary forces,2 focused acoustics waves,3 surface tension,4

transistor based actuation,5 electrowetting,6 and chemical5,7

or temperature based Leidenfrost ratchet.8 Among these

techniques, the concept of vibration on asymmetrically tex-

tured surfaces9,10 (i.e., surface ratchets) provides a unique

opportunity to transport small solid or liquid materials with-

out a directed force and eliminates the need for complex fab-

rication procedures and controls for droplet manipulation.

Microscale engineering requires methods to assemble

small size objects to create larger and more complex con-

structs.11 Therefore, there is a need for technologies to manip-

ulate and assemble the building blocks, e.g., microgels for

tissue engineering applications.11 Recently, Demirel et al.
have developed an engineered hydrophobic surface deriving

its unidirectional wetting directly from its asymmetric nano-

scale roughness.10 The nanofilm consists of a well-ordered

array of polymeric nanorods fabricated via vapor-phase

oblique angle polymerization.12 In addition, Xu et al. pre-

sented assembly of microgels within microdroplets to build

complex constructs using physical fields including acoustics

and magnetic nanoparticles.11 However, a directional mecha-

nism to transport microgels to a target location has not been

demonstrated. Technologies, such as surface ratchets, could

be effective to manipulate and assemble microgels.

Here, we showed the manipulation of microgels on a

unidirectional surface by a ratchet mechanism, which can

move soft materials encapsulated in droplets. Specifically,

we quantitatively studied transport of a microgel inside a

droplet via vibrations on a polymeric textured nanofilm. By

inducing a vibrational field on the surface, droplets can be

propelled on the unidirectional surface, which points in the

direction of the asperities. Here, time-lapse frames of droplet

motion with and without microgels were quantified as a

function of vibration frequency.

Droplet transport on a surface requires a textured surface

to move droplets with low vibration amplitudes by a ratchet-

ing mechanism. Correspondingly, the nanofilm provides a

hydrophobic directional surface due to its nanoscale tex-

ture.10 The smooth nanofilm surface, fabricated by oblique

angle vapor deposition of poly(p-choloro-xylylene) (PPX),

carries microliter drops along the half-pipes with minimal

droplet shape deformations.10 The tilted fibers on our PPX

nanofilm produce unidirectional wetting, thereby enabling

droplet motion in a single direction. Though adhesive, our

unidirectional hydrophobic nanofilm can support large drops

in Cassie states, i.e., suspended above the nanorods.10

Figure 1(a) shows the frequency required to move the

water droplets (Ultra pure, 18.2 MX cm) as a function of drop

size. The water droplets were directionally transported along

the half-pipes, which were attached horizontally to a mechani-

cal vibrator (PASCO SF 9324). The oscillations of the me-

chanical vibrator were kept constant at low amplitude (0.585

mm) for all experiments. Experimental data were recorded

with a digital camcorder (Sony DCRTRV50), and the veloc-

ities were estimated from the movies using ImageJ and Win-

dows Movie Maker. These results showed that droplet volume

has a specific frequency interval in which the droplet could be

transported.13 Additionally, we demonstrated that the droplet

volume is inversely proportional to the frequency. The scaling

x� 1/sqrt(V) is due to Rayleigh14 for spherical volumes, V,

which is given by x¼ (3pqV/(8c))1/2, where q is the density

and c is the surface tension of water. Figure 1(b) shows the

velocities of these droplets as a function of normalized vibra-

tions, x/x*, where x*¼ (c/m)1/2 for water and m is the mass

of drop which varies between 2 to 12 lg. The data collected at
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different frequencies and drop volume cluster around the

same peak, which indicate that the velocity peaks are due to

resonance effects arising from the matching of the vibrational

and natural frequencies.15

The microgel preparation is shown schematically in Fig-

ure 2(a), and an optical image of the microgels on a glass sub-

strate is shown as an inset.11 Briefly, microgels were prepared

using a pre-polymer solution by dissolving 20% poly(ethylene

glycol) methacrylate (PEGMA, Sigma) in Dulbecco’s phos-

phate buffer saline (DPBS). A photo-initiator, 2-hydroxy-40-
(2-hydroxy-ethoxy)-2-methyl-propiophenone (98%, Sigma),

was added to the pre-polymer solution right before the UV

exposure. The mixture was placed between two glass slides

with a 600 lm spacer. UV light (UVP B-100A, 365 nm) was

exposed from a 10 cm distance, through a photo-mask placed

on the top glass slide, for 3 min to cure the pre-polymer solu-

tion into 500 lm2 microgels. Microgels were washed off with

distilled water on a glass slide and collected in a glass con-

tainer. The fourier transform infrared spectroscopy (FTIR)

spectra in Figure 2(a) show the bands of 1724 cm�1, 1090

cm�1, 3446 cm�1 (wide area), and 2869 cm�1, indicating the

C¼O and C–O stretching of PEGMA’s carbonyl group, O–H

stretching in water, CH2 stretching and bending of PEGMA,

respectively. Contact angle of droplet on the nanofilm without

and with a microgel in the water droplet were measured as

117�6 3� and 88�6 3� (FTA 1000B, First Ten Angstroms).

The change of surface wetting properties from hydrophobic to

hydrophilic promotes water penetration into the interstitial

regions between nanorods, leading to droplet impalement that

renders the surfaces impractical for droplet transport. There-

fore, a thin layer (�5 lm) of planar poly(p-choloro-xylylene)

was deposited on the microgels using a vacuum deposition16

(SCS, PDS 2010) to prevent the hydrophilic transformation of

the surface due to the presence of an encapsulated microgel in

the droplet.

We analyzed the vibration frequency dependence as a

function of droplet volume in Figure 2(b). An example of

individual microgel transport in a water droplet on the direc-

tional nanofilms is shown in the inset of Figure 2(b). After

placing a 5 ll water droplet on the half-pipe, a 600 lm3

microgel was placed in the droplet by a pipette. Vibration of

the surface at 94 Hz allowed the microgel to move within the

5 ll droplet along the ratchet. We also compared the fre-

quency dependence of water droplets without an encapsu-

lated microgel in Figure 2(b). The average frequency

required to move the droplets with a microgel is similar in

magnitude to the droplets without a microgel.

Transport of microgels by a sequential process (Figure 3)

shows the ability to control microgel transport on the nano-

coated surface via ratcheting. First, we demonstrated the se-

quential drop transport in Figure 3(a) by placing three 2 ll

water droplets along the nanotextured half-pipe. A larger

water drop (5 ll) was placed at one end of the half-pipe which

moves when the vibration is set at 95 Hz. As noted earlier, the

vibration frequency was sequentially decreased (i.e., 95-65

Hz) to move larger droplets (i.e., 5-11 ll) on the directional

nanofilm. We repeated the same experiment by adding micro-

gels into the droplets (Figure 3(b)).

In summary, we demonstrated that droplets with and

without microgels move unidirectionally as a function of

vibration frequency on a nanocoated surface. Directional

transport of droplets on nanotextured surfaces is a promising

FIG. 1. (Color online) (a) Vibration fre-

quency as a function of water droplet

size. Inset shows the optical image of the

directional nanofilm coated half-pipe

and a schematic of vibration for droplet

transport (b) Droplet transport speed at

various normalized vibration frequencies

shows clustering of the data around 0.8.

Maximum droplet transport speed of 3.5

mm/s was observed (scale bar: 5 mm).

FIG. 2. (Color online) (a) Schematic of

microgel synthesis, FTIR of the micro-

gel, and optical image of fabricated

microgels are shown (scale bar in the

inset is 1 mm). (b) Vibration frequency

of as a function of water droplet size

with and without a microgel encapsu-

lated within the transported droplet. The

inset shows a microgel encapsulated by

5 ll water drop, vibrated at 94 Hz on

directional nanofilm (scale bar: 5 mm).
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technology for moving soft cargo such as microgels. Future

work will focus on two directions: (i) developing a surface

chemistry that will be versatile for transport of droplets other

than water and (ii) encapsulation of cells in microgels to

achieve assembly of complex shapes. The research in the as-

sembly of cell encapsulated microgels can potentially over-

come the limitations to obtain control over cell-cell

proximity with microscale resolution.
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FIG. 3. (Color online) Optical images of the water droplets with and without

a microgel on nanofilm coated half-pipes. A 5 lL droplet moves from right

to left collecting three 2 lL droplets without (a) and with (b) microgels. As

the drop volume gets larger the frequency of vibration is lowered to trans-

port droplets. Three microgels were sequentially transported and merged

into a single droplet on the nanofilm. (scale bar: 5 mm).
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