7 research outputs found

    Sensitivity to AMF species is greater in late‐successional than early‐successional native or nonnative grassland plants

    Get PDF
    This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.Sensitivity of plant species to individual arbuscular mycorrhizal (AM) fungal species is of primary importance to understanding the role of AM fungal diversity and composition in plant ecology. Currently, we do not have a predictive framework for understanding which plant species are sensitive to different AM fungal species. In two greenhouse studies, we tested for differences in plant sensitivity to different AM fungal species and mycorrhizal responsiveness across 17 grassland plant species of North America that varied in successional stage, native status, and plant family by growing plants with different AM fungal treatments including eight single AM fungal isolates, diverse mixtures of AM fungi, and non‐inoculated controls. We found that late successional grassland plant species were highly responsive to AM fungi and exhibited stronger sensitivity in their response to individual AM fungal taxa compared to nonnative or early successional native grassland plant species. We confirmed these results using a meta‐analysis that included 13 experiments, 37 plant species, and 40 fungal isolates (from nine publications and two greenhouse experiments presented herein). Mycorrhizal responsiveness and sensitivity of response (i.e., variation in plant biomass response to different AM fungal taxa) did not differ by the source of fungal inocula (i.e., local or not local) or plant family. Sensitivity of plant response to AM fungal species was consistently correlated with the average mycorrhizal response of that plant species. This study identifies that AM fungal identity is more important to the growth of late successional plant species than early successional or nonnative plant species, thereby predicting that AM fungal composition will be more important to plant community dynamics in late successional communities than in early successional or invaded plant communities

    Exp1_data

    No full text
    Data file for greenhouse Experiment

    MetaAnalysis.sas

    No full text
    SAS code for analysis of all studies included in the meta-analysi

    Exp2_mixed model plus_Fes1_Fes2_.sas

    No full text
    SAS code for analysis of greenhouse Experiment 2

    Exp2_data

    No full text
    Datafile for greenhouse Experiment

    Data from: Sensitivity to AMF species is greater in late-successional than early-successional native or non-native grassland plants

    No full text
    Sensitivity of plant species to individual arbuscular mycorrhizal (AM) fungal species is of primary importance to understanding the role of AM fungal diversity and composition in plant ecology. Currently, we do not have a predictive framework for understanding which plant species are sensitive to different AM fungal species. In two greenhouse studies, we tested for differences in plant sensitivity to different AM fungal species and mycorrhizal responsiveness across 17 grassland plant species of North America that varied in successional stage, native status, and plant family by growing plants with different AM fungal treatments including eight single AM fungal isolates, diverse mixtures of AM fungi, and non-inoculated controls. We found that late successional grassland plant species were highly responsive to AM fungi and exhibited stronger sensitivity in their response to individual AM fungal taxa compared to non-native or early successional native grassland plant species. We confirmed these results using a meta-analysis that included 13 experiments, 37 plant species, and 40 fungal isolates (from nine publications and two greenhouse experiments presented herein). Mycorrhizal responsiveness and sensitivity of response (i.e., variation in plant biomass response to different AM fungal taxa) did not differ by the source of fungal inocula (i.e., local or not local) or plant family. Sensitivity of plant response to AM fungal species was consistently correlated with the average mycorrhizal response of that plant species. This study identifies that AM fungal identity is more important to the growth of late successional plant species than early successional or non-native plant species, thereby predicting that AM fungal composition will be more important to plant community dynamics in late successional communities than in early successional or invaded plant communities
    corecore