21 research outputs found
Natural equilibrium states for multimodal maps
This paper is devoted to the study of the thermodynamic formalism for a class
of real multimodal maps. This class contains, but it is larger than,
Collet-Eckmann. For a map in this class, we prove existence and uniqueness of
equilibrium states for the geometric potentials , for the largest
possible interval of parameters . We also study the regularity and convexity
properties of the pressure function, completely characterising the first order
phase transitions. Results concerning the existence of absolutely continuous
invariant measures with respect to the Lebesgue measure are also obtained