7 research outputs found

    <p>Pattern Formation in Coupled Networks with Inhibition and Gap Junctions</p>

    Get PDF
    In this dissertation we analyze networks of coupled phase oscillators. We consider systems where long range chemical coupling and short range electrical coupling have opposite effects on the synchronization process. We look at the existence and stability of three patterns of activity: synchrony, clustered state and asynchrony. In Chapter 1, we develop a minimal phase model using experimental results for the olfactory system of Limax. We study the synchronous solution as the strength of synaptic coupling increases. We explain the emergence of traveling waves in the system without a frequency gradient. We construct the normal form for the pitchfork bifurcation and compare our analytical results with numerical simulations. In Chapter 2, we study a mean-field coupled network of phase oscillators for which a stable two-cluster solution exists. The addition of nearest neighbor gap junction coupling destroys the stability of the cluster solution. When the gap junction coupling is strong there is a series of traveling wave solutions depending on the size of the network. We see bistability in the system between clustered state, periodic solutions and traveling waves. The bistability properties also change with the network size. We analyze the system numerically and analytically. In Chapter 3, we turn our attention to a very popular model about network synchronization. We represent the Kuramoto model in its original form and calculate the main results using a different technique. We also look at a modified version and study how this effects synchronization. We consider a collection of oscillators organized in m groups. The addition of gap junctions creates a wave like behavior

    Pattern Formation in an Array of Oscillators with Electrical and Chemical Coupling

    No full text

    Phase Resetting Curves Allow for Simple and Accurate Prediction of Robust N:1 Phase Locking for Strongly Coupled Neural Oscillators

    Get PDF
    Existence and stability criteria for harmonic locking modes were derived for two reciprocally pulse coupled oscillators based on their first and second order phase resetting curves. Our theoretical methods are general in the sense that no assumptions about the strength of coupling, type of synaptic coupling, and model are made. These methods were then tested using two reciprocally inhibitory Wang and Buzsáki model neurons. The existence of bands of 2:1, 3:1, 4:1, and 5:1 phase locking in the relative frequency parameter space was predicted correctly, as was the phase of the slow neuron's spike within the cycle of the fast neuron in which it occurred. For weak coupling the bands are very narrow, but strong coupling broadens the bands. The predictions of the pulse coupled method agreed with weak coupling methods in the weak coupling regime, but extended predictability into the strong coupling regime. We show that our prediction method generalizes to pairs of neural oscillators coupled through excitatory synapses, and to networks of multiple oscillatory neurons. The main limitation of the method is the central assumption that the effect of each input dies out before the next input is received
    corecore