91 research outputs found
What it will take to feed 5.0 billion rice consumers in 2030
Major advances have occurred in rice production due to adoption of green revolution technology. Between 1966 and 2000, the population of densely populated low income countries grew by 90% but rice production increased by 130% from 257 million tons in 1966 to 600 million tons in 2000. However, the population of rice consuming countries continues to grow and it is estimated that we will have to produce 40 more rice in 2030. This increased demand will have to be met from less land, with less water, less labor and fewer chemicals. To meet the challenge of producing more rice from suitable lands we need rice varieties with higher yield potential and greater yield stability. Various strategies for increasing the rice yield potential being employed include: (1) conventional hybridization and selection procedures, (2) ideotype breeding, (3) hybrid breeding, (4) wide hybridization and (5) genetic engineering. Various conventional and biotechnology approach are being employed to develop durable resistance to diseases and insect and for tolerance to abiotic stresses. The availability of the rice genome sequence will now permit identification of the function of each of 60,000 rice genes through functional genomics. Once the function of a gene is identified, it will be possible to develop new rice varieties by introduction of the gene through traditional breeding in combination with marker aided selection or direct engineering of genes into rice varieties
Origin, dispersal, cultivation and variation of rice
There are two cultivated and twenty-one wild species of genus Oryza. O. sativa, the Asian cultivated rice is grown all over the world. The African cultivated rice, O. glaberrima is grown on a small scale in West Africa. The genus Oryza probably originated about 130 million years ago in Gondwanaland and different species got distributed into different continents with the breakup of Gondwanaland. The cultivated species originated from a common ancestor with AA genome. Perennial and annual ancestors of O. sativa are O. rufipogon and O. nivara and those of O. glaberrima are O. longistaminata, O. breviligulata and O. glaberrima probably domesticated in Niger river delta. Varieties of O. sativa are classified into six groups on the basis of genetic affinity. Widely known indica rices correspond to group I and japonicas to group VI. The so called javanica rices also belong to group VI and are designated as tropical japonicas in contrast to temperate japonicas grown in temperate climate. Indica and japonica rices had a polyphyletic origin. Indicas were probably domesticated in the foothills of Himalayas in Eastern India and japonicas somewhere in South China. The indica rices dispersed throughout the tropics and subtropics from India. The japonica rices moved northward from South China and became the temperate ecotype. They also moved southward to Southeast Asia and from there to West Africa and Brazil and became tropical ecotype. Rice is now grown between 55°N and 36°S latitudes. It is grown under diverse growing conditions such as irrigated, rainfed lowland, rainfed upland and floodprone ecosystems. Human selection and adaptation to diverse environments has resulted in numerous cultivars. It is estimated that about 120000 varieties of rice exist in the world. After the establishment of International Rice Research Institute in 1960, rice varietal improvement was intensified and high yielding varieties were developed. These varieties are now planted to 70% of world's riceland. Rice production doubled between 1966 and 1990 due to large scale adoption of these improved varieties. Rice production must increase by 60% by 2025 to feed the additional rice consumers. New tools of molecular and cellular biology such as anther culture, molecular marker aided selection and genetic engineering will play increasing role in rice improvement
Green revolution: the way forward
The origin of agriculture led to the domestication of many plant species and to the exploitation of natural resources. It took almost 10,000 years for food grain production to reach 1 billion tons, in 1960, and only 40 years to reach 2 billion tons, in 2000. This unprecedented increase, which has been named the 'green revolution', resulted from the creation of genetically improved crop varieties, combined with the application of improved agronomic practices
Tomato secondary trisomics: origin, identification, morphology, and use in cytogenetic analysis of the genome
This article does not have an abstract
Rice breeding: past, present and future
The Green Revolution technology, centered on high-yielding, disease- and insect-resistant rice varieties, has revolutionized rice production since the late 1960s. Many countries in the rice belt of Asia, which used to import large quantities of rice, have become self-sufficient and have some surpluses to export. As a result, rice prices on the international market and in the domestic markets of many countries have fallen, thus helping the purchasing power of weaker sections of these societies. The consequent improvement in food security has led to political stability and allowed the governments of the developing countries to pay more attention to the pressing needs of economic development. Population growth is continuing at more than 2% annually in many developing rice-growing countries. The demand for rice is likely to exceed supply by the year 2000. To feed this growing population, the growth rate of rice production needs to accelerate further. For this we need varieties with higher yield potential, greater yield stability, shorter growth duration, and superior grain quality. Innovative breeding methods and the emerging techniques of biotechnology must supplement the conventional breeding methods in achieving the future rice breeding goals. Rice breeding today is an international effort, involving scientists worldwide
Recommended from our members
Andhra Pradesh Netherlands Biotechnology Programme for dyland agriulture: Mid-term evaluation of second phase
Progress in ideotype breeding to increase rice yield potential
The ideotype approach has been used in breeding programs at the International Rice Research Institute (IRRI) and in China to improve rice yield potential. First-generation new plant type (NPT) lines developed from tropical japonica at IRRI did not yield well because of limited biomass production and poor grain filling. Progress has been made in second-generation NPT lines developed by crossing elite indica with improved tropical japonica. Several second-generation NPT lines outyielded the first-generation NPT lines and indica check varieties. China's "super"rice breeding project has developed many F1 hybrid varieties using a combination of the ideotype approach and intersubspecific heterosis. These hybrid varieties produced grain yield of 12 t ha-1 in on-farm demonstration fields, 8-15% higher than the hybrid check varieties. The success of China's "super" hybrid rice was partially the result of assembling the good components of IRRI's NPT design in addition to the use of intersubspecific heterosis. For example, both designs focused on large panicle size, reduced tillering capacity, and improved lodging resistance. More importantly, improvement in plant type design was achieved in China's "super" hybrid rice by emphasizing the top three leaves and panicle position within a canopy in order to meet the demand of heavy panicles for a large source supply. The success of "super"hybrid rice breeding in China and progress in NPT breeding at IRRI suggest that the ideotype approach is effective for breaking the yield ceiling of an irrigated rice crop
Genetics of resistance of rice cultivar ARC10550 to Bangladesh brown planthopper teletype
Resistance to brown planthopper in rice cultivar ARC 10550 was found to be governed by a single recessive gene which was designated bph 5. It conveys resistance to brown planthopper populations in South Asia but not to the populations in East and Southeast Asia. This gene segregated independently of four other known genes for brown planthopper resistance. It should be possible to combine this gene with any of the other four genes to develop rice cultivars with a broad spectrum of resistance
Rice yields decline with higher night temperature from global warming
The impact of projected global warming on crop yields has been evaluated by indirect methods using simulation models. Direct studies on the effects of observed climate change on crop growth and yield could provide more accurate information for assessing the impact of climate change on crop production. We analyzed weather data at the International Rice Research Institute Farm from 1979 to 2003 to examine temperature trends and the relationship between rice yield and temperature by using data from irrigated field experiments conducted at the International Rice Research Institute Farm from 1992 to 2003. Here we report that annual mean maximum and minimum temperatures have increased by 0.35°C and 1.13°C, respectively, for the period 1979–2003 and a close linkage between rice grain yield and mean minimum temperature during the dry cropping season (January to April). Grain yield declined by 10% for each 1°C increase in growing-season minimum temperature in the dry season, whereas the effect of maximum temperature on crop yield was insignificant. This report provides a direct evidence of decreased rice yields from increased nighttime temperature associated with global warming
- …