9 research outputs found
cAMP Response Element-Binding Protein Deficiency Allows for Increased Neurogenesis and a Rapid Onset of Antidepressant Response
cAMP response element-binding protein (CREB) has been implicated in the molecular and cellular mechanisms of chronic antidepressant (AD) treatment, although its role in the behavioral response is unclear. CREB-deficient (CREBαΔ mutant) mice demonstrate an antidepressant phenotype in the tail suspension test (TST) and forced-swim test. Here, we show that, at baseline, CREBαΔ mutant mice exhibited increased hippocampal cell proliferation and neurogenesis compared with wild-type (WT) controls, effects similar to those observed in WT mice after chronic desipramine (DMI) administration. Neurogenesis was not further augmented by chronic DMI treatment in CREBαΔ mutant mice. Serotonin depletion decreased neurogenesis in CREBαΔ mutant mice toWTlevels, which correlated with a reversal of the antidepressant phenotype in the TST. This effect was specific for the reversal of the antidepressant phenotype in these mice, because serotonin depletion did not alter a baseline anxiety-like behavior in CREB mutant mice. The response to chronic AD treatment in the novelty-induced hypophagia (NIH) test may rely on neurogenesis. Therefore, we used this paradigm to evaluate chronic AD treatment in CREB mutant mice to determine whether the increased neurogenesis in these mice alters their response in the NIH paradigm. Whereas both WT and CREBαΔ mutant mice responded to chronic AD treatment in the NIH paradigm, only CREBαΔ mutant mice responded to acute AD treatment. However, in the elevated zero maze, DMI did not reverse anxiety behavior in mutant mice. Together, these data show that increased hippocampal neurogenesis allows for an antidepressant phenotype as well as a rapid onset of behavioral responses to AD treatment
Stress and the Commensal Microbiota: Importance in parturition and infant neurodevelopment
The body is colonized by an enormous array of microbes that are collectively called the microbiota. During quiescent periods, microbial communities within the gut are relatively resistant to change. However, several factors that disrupt homeostasis can also significantly change gut microbial community structure. One factor that has been shown to change the composition of the gut microbiota is exposure to psychological stressors. Studies demonstrate that the commensal microbiota are involved in stressor-induced immunomodulation, but other biological effects are not yet known. This review discusses emerging evidence that the microbiota can impact the brain and behavior and indicates that stressor-induced alterations in the composition of gut microbial communities contribute to stressor-induced behavioral changes. This review will also discuss the evidence that such effects are most evident early in life, where both stress and the microbiota have been linked to birth outcomes, such as prematurity, and neurodevelopment. When considered together, a paradigm emerges in which stressor-induced alterations in commensal microbial populations significantly impact parturition and infant neurodevelopment
Stressor-Induced Increases in Circulating, but Not Colonic, Cytokines Are Related to Anxiety-like Behavior and Hippocampal Inflammation in a Murine Colitis Model
Stressor exposure increases colonic inflammation. Because inflammation leads to anxiety-like behavior, we tested whether stressor exposure in mice recovering from dextran-sulfate-sodium (DSS)-induced colitis enhances anxiety-like behavior. Mice received 2% DSS for five consecutive days prior to being exposed to a social-disruption (SDR) stressor (or being left undisturbed). After stressor exposure, their behavior was tested and colitis was assessed via histopathology and via inflammatory-cytokine measurement in the serum and colon. Cytokine and chemokine mRNA levels in the colon, mesenteric lymph nodes (MLNs), hippocampus, and amygdala were measured with RT-PCR. SDR increased anxiety-like behaviors, which correlated with serum and hippocampal IL-17A. The stressor also reduced IL-1β, CCL2, and iNOS in the colonic tissue, but increased iNOS, IFNγ, IL-17A, and TNFα in the MLNs. A network analysis indicated that reductions in colonic iNOS were related to elevated MLN iNOS and IFNγ. These inflammatory markers were related to serum and hippocampal IL-17A and associated with anxiety-like behavior. Our data suggest that iNOS may protect against extra-colonic inflammation, and when suppressed during stress it is associated with elevated MLN IFNγ, which may coordinate gut-to-brain inflammation. Our data point to hippocampal IL-17A as a key correlate of anxiety-like behavior
Stress and depression-associated shifts in gut microbiota: A pilot study of human pregnancy
Background: Psychosocial stress and mood-related disorders, such as depression, are prevalent and vulnerability to these conditions is heightened during pregnancy. Psychosocial stress induces consequences via several mechanisms including the gut microbiota-brain axis and associated signaling pathways. Previous preclinical work indicates that prenatal stress alters maternal gut microbial composition and impairs offspring development. Importantly, although the fecal and vaginal microenvironments undergo alterations across pregnancy, we lack consensus regarding which shifts are adaptive or maladaptive in the presence of prenatal stress and depression. Clinical studies interrogating these relationships have identified unique taxa but have been limited in study design. Methods: We conducted a prospective cohort study of pregnant individuals consisting of repeated administration of psychometrics (Perceived Stress Scale (PSS) and Center for Epidemiological Studies Depression Scale (CES-D)) and collection of fecal and vaginal microbiome samples. Fecal and vaginal microbial community composition across psychometric responses were interrogated using full-length 16S rRNA sequencing followed by α and β-diversity metrics and taxonomic abundance. Results: Early pregnancy stress was associated with increased abundance of fecal taxa not previously identified in related studies, and stress from late pregnancy through postpartum was associated with increased abundance of typical vaginal taxa and opportunistic pathogens in the fecal microenvironment. Additionally, in late pregnancy, maternal stress and depression scores were associated with each other and with elevated maternal C–C motif chemokine ligand 2 (CCL2) concentrations. At delivery, concordant with previous literature, umbilical CCL2 concentration was negatively correlated with relative abundance of maternal fecal Lactobacilli. Lastly, participants with more severe depressive symptoms experienced steeper decreases in prenatal vaginal α-diversity. Conclusion: These findings a) underscore previous preclinical and clinical research demonstrating the effects of prenatal stress on maternal microbiome composition, b) suggest distinct biological pathways for the consequences of stress versus depression and c) extend the literature by identifying several taxa which may serve critical roles in mediating this relationship. Thus, further interrogation of the role of specific maternal microbial taxa in relation to psychosocial stress and its sequelae is warranted
Traditional revolution: The issue of marriage on religious kibbutzim, 1929–1948 – a comparative view
Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)
In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field