45,978 research outputs found

    Acoustic Echo and Noise Cancellation System for Hand-Free Telecommunication using Variable Step Size Algorithms

    Get PDF
    In this paper, acoustic echo cancellation with doubletalk detection system is implemented for a hand-free telecommunication system using Matlab. Here adaptive noise canceller with blind source separation (ANC-BSS) system is proposed to remove both background noise and far-end speaker echo signal in presence of double-talk. During the absence of double-talk, far-end speaker echo signal is cancelled by adaptive echo canceller. Both adaptive noise canceller and adaptive echo canceller are implemented using LMS, NLMS, VSLMS and VSNLMS algorithms. The normalized cross-correlation method is used for double-talk detection. VSNLMS has shown its superiority over all other algorithms both for double-talk and in absence of double-talk. During the absence of double-talk it shows its superiority in terms of increment in ERLE and decrement in misalignment. In presence of double-talk, it shows improvement in SNR of near-end speaker signal

    Bounds on quark mass matrices elements due to measured properties of the mixing matrix and present values of the quark masses

    Get PDF
    We obtain constraints on possible structures of mass matrices in the quark sector by using as experimental restrictions the determined values of the quark masses at the MZM_Z energy scale, the magnitudes of the quark mixing matrix elements VudV_{\rm ud}, VusV_{\rm us}, VcdV_{\rm cd}, and VcsV_{\rm cs}, and the Jarlskog invariant J(V)J(V). Different cases of specific mass matrices are examined in detail. The quality of the fits for the Fritzsch and Stech type mass matrices is about the same with χ2/dof=4.23/3=1.41\chi^2/{\rm dof}=4.23/3=1.41 and χ2/dof=9.10/4=2.28\chi^2/{\rm dof}=9.10/4=2.28, respectively. The fit for a simple generalization (one extra parameter) of the Fritzsch type matrices, in the physical basis, is much better with χ2/dof=1.89/4=0.47\chi^2/{\rm dof}=1.89/4=0.47. For comparison we also include the results using the quark masses at the 2 GeV energy scale. The fits obtained at this energy scale are similar to that at MZM_Z energy scale, implying that our results are unaffected by the evolution of the quark masses from 2 to 91 GeV.Comment: Evolution effects include

    Quantum Inverse Square Interaction

    Full text link
    Hamiltonians with inverse square interaction potential occur in the study of a variety of physical systems and exhibit a rich mathematical structure. In this talk we briefly mention some of the applications of such Hamiltonians and then analyze the case of the N-body rational Calogero model as an example. This model has recently been shown to admit novel solutions, whose properties are discussed.Comment: Talk presented at the conference "Space-time and Fundamental Interactions: Quantum Aspects" in honour of Prof. A.P.Balachandran's 65th birthday, Vietri sul Mare, Italy, 26 - 31 May, 2003, Latex file, 9 pages. Some references added in the replaced versio

    RTL2RTL Formal Equivalence: Boosting the Design Confidence

    Full text link
    Increasing design complexity driven by feature and performance requirements and the Time to Market (TTM) constraints force a faster design and validation closure. This in turn enforces novel ways of identifying and debugging behavioral inconsistencies early in the design cycle. Addition of incremental features and timing fixes may alter the legacy design behavior and would inadvertently result in undesirable bugs. The most common method of verifying the correctness of the changed design is to run a dynamic regression test suite before and after the intended changes and compare the results, a method which is not exhaustive. Modern Formal Verification (FV) techniques involving new methods of proving Sequential Hardware Equivalence enabled a new set of solutions for the given problem, with complete coverage guarantee. Formal Equivalence can be applied for proving functional integrity after design changes resulting from a wide variety of reasons, ranging from simple pipeline optimizations to complex logic redistributions. We present here our experience of successfully applying the RTL to RTL (RTL2RTL) Formal Verification across a wide spectrum of problems on a Graphics design. The RTL2RTL FV enabled checking the design sanity in a very short time, thus enabling faster and safer design churn. The techniques presented in this paper are applicable to any complex hardware design.Comment: In Proceedings FSFMA 2014, arXiv:1407.195

    Screening correlators with chiral Fermions

    Get PDF
    We study screening correlators of quark-antiquark composites at T=2T_c, where T_c is the QCD phase transition temperature, using overlap quarks in the quenched approximation of lattice QCD. As the lattice spacing is changed from 1/4T to a=1/6T and 1/8T, we find that screening correlators change little, in contrast with the situation for other types of lattice fermions. All correlators are close to the ideal gas prediction at small separations. The long distance falloff is clearly exponential, showing that a parametrization by a single screening length is possible at distances z > 1/T. The correlator corresponding to the thermal vector is close to the ideal gas value at all distances, whereas that for the thermal scalar deviates at large distances. This is examined through the screening lengths and momentum space correlators. There is strong evidence that the screening transfer matrix does not have reflection positivity.Comment: 10 pages, 9 fig
    corecore