74,769 research outputs found

    Fe and N self-diffusion in non-magnetic Fe:N

    Full text link
    Fe and N self-diffusion in non-magnetic FeN has been studied using neutron reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were prepared using magnetron sputtering. It was remarkable to observe that N diffusion was slower compared to Fe while the atomic size of Fe is larger compared to N. An attempt has been made to understand the diffusion of Fe and N in non-magnetic Fe:N

    Surfactant induced smooth and symmetric interfaces in Cu/Co multilayers

    Full text link
    In this work we studied Ag surfactant induced growth of Cu/Co multilayers. The Cu/Co multilayers were deposited using Ag surfactant by ion beam sputtering technique. It was found that Ag surfactant balances the asymmetry between the surface free energy of Cu and Co. As a result, the Co-on-Cu and Cu-on-Co interfaces become sharp and symmetric and thereby improve the thermal stability of the multilayer. On the basis of obtained results, a mechanism leading to symmetric and stable interfaces in Cu/Co multilayers is discussed.Comment: 7 Pages, 7 Figure

    Weighted Density Approximation Description of Insulating YH3_3 and LaH3_3

    Full text link
    Density functional calculations within the weighted density approximation (WDA) are presented for YH3_3 and LaH3_3. We investigate some commonly used pair-distribution functions G. These calculations show that within a consistent density functional framework a substantial insulating gap can be obtained while at the same time retaining structural properties in accord with experimental data. Our WDA band structures agree with those of GWGW approximation very well, but the calculated band gaps are still 1.0-2.0 eV smaller than experimental findings.Comment: 6 Pages, 3 figure

    Formation of iron nitride thin films with Al and Ti additives

    Full text link
    In this work we investigate the process of iron nitride (Fe-N) phase formation using 2 at.% Al or 2 at.% Ti as additives. The samples were prepared with a magnetron sputtering technique using different amount of nitrogen during the deposition process. The nitrogen partial pressure (\pn) was varied between 0-50% (rest Argon) and the targets of pure Fe, [Fe+Ti] and [Fe+Al] were sputtered. The addition of small amount of Ti or Al results in improved soft-magnetic properties when sputtered using \pn ≤\leq 10\p. When \pn is increased to 50\p non-magnetic Fe-N phases are formed. We found that iron mononitride (FeN) phases (N at% ∼\sim50) are formed with Al or Ti addition at \pn =50% whereas in absence of such addition \eFeN phases (N\pat∼\sim30) are formed. It was found that the overall nitrogen content can be increased significantly with Al or Ti additions. On the basis of obtained result we propose a mechanism describing formation of Fe-N phases Al and Ti additives.Comment: 9 Pages, 7 Figure

    Discovery of a remarkable subpulse drift pattern in PSR B0818-41

    Full text link
    We report the discovery of a remarkable subpulse drift pattern in the relatively less studied wide profile pulsar, B0818-41, using high sensitivity GMRT observations. We find simultaneous occurrence of three drift regions with two different drift rates: an inner region with steeper apparent drift rate flanked on each side by a region of slower apparent drift rate. Furthermore, these closely spaced drift bands always maintain a constant phase relationship. Though these drift regions have significantly different values for the measured P2, the measured P3 value is the same and equal to 18.3 P1. We interpret the unique drift pattern of this pulsar as being created by the intersection of our line of sight (LOS) with two conal rings on the polar cap of a fairly aligned rotator (inclination angle alpha ~ 11 deg), with an ``inner'' LOS geometry (impact angle beta ~ -5.4 deg). We argue that both the rings have the same values for the carousel rotation periodicity P4 and the number of sparks Nsp. We find that Nsp is 19-21 and show that it is very likely that, P4 is the same as the measured P3, making it a truly unique pulsar. We present results from simulations of the radiation pattern using the inferred parameters, that support our interpretations and reproduce the average profile as well as the observed features in the drift pattern quite well.Comment: 5 pages and 7 figures, Accepted for publication in MNRAS Letter

    Cohesion of BaReH9_9 and BaMnH9_9: Density Functional Calculations and Prediction of (MnH9)2−_9)^{2-} Salts

    Full text link
    Density functional calculations are used to calculate the structural and electronic properties of BaReH9_9 and to analyze the bonding in this compound. The high coordination in BaReH9_9 is due to bonding between Re 5dd states and states of dd-like symmetry formed from combinations of H ss orbitals in the H9_9 cage. This explains the structure of the material, its short bond lengths and other physical properties, such as the high band gap. We compare with results for hypothetical BaMnH9_9, which we find to have similar bonding and cohesion to the Re compound. This suggests that it may be possible to synthesize (MnH9)2−_9)^{2-} salts. Depending on the particular cation, such salts may have exceptionally high hydrogen contents, in excess of 10 weight
    • …
    corecore