66,725 research outputs found
Sequence-based Anytime Control
We present two related anytime algorithms for control of nonlinear systems
when the processing resources available are time-varying. The basic idea is to
calculate tentative control input sequences for as many time steps into the
future as allowed by the available processing resources at every time step.
This serves to compensate for the time steps when the processor is not
available to perform any control calculations. Using a stochastic Lyapunov
function based approach, we analyze the stability of the resulting closed loop
system for the cases when the processor availability can be modeled as an
independent and identically distributed sequence and via an underlying Markov
chain. Numerical simulations indicate that the increase in performance due to
the proposed algorithms can be significant.Comment: 14 page
Obtaining pressure versus concentration phase diagrams in spin systems from Monte Carlo simulations
We propose an efficient procedure for determining phase diagrams of systems
that are described by spin models. It consists of combining cluster algorithms
with the method proposed by Sauerwein and de Oliveira where the grand canonical
potential is obtained directly from the Monte Carlo simulation, without the
necessity of performing numerical integrations. The cluster algorithm presented
in this paper eliminates metastability in first order phase transitions
allowing us to locate precisely the first-order transitions lines. We also
produce a different technique for calculating the thermodynamic limit of
quantities such as the magnetization whose infinite volume limit is not
straightforward in first order phase transitions. As an application, we study
the Andelman model for Langmuir monolayers made of chiral molecules that is
equivalent to the Blume-Emery-Griffiths spin-1 model. We have obtained the
phase diagrams in the case where the intermolecular forces favor interactions
between enantiomers of the same type (homochiral interactions). In particular,
we have determined diagrams in the surface pressure versus concentration plane
which are more relevant from the experimental point of view and less usual in
numerical studies
Weighted Density Approximation Description of Insulating YH and LaH
Density functional calculations within the weighted density approximation
(WDA) are presented for YH and LaH. We investigate some commonly used
pair-distribution functions G. These calculations show that within a consistent
density functional framework a substantial insulating gap can be obtained while
at the same time retaining structural properties in accord with experimental
data. Our WDA band structures agree with those of approximation very well,
but the calculated band gaps are still 1.0-2.0 eV smaller than experimental
findings.Comment: 6 Pages, 3 figure
Reactor for simulation and acceleration of solar ultraviolet damage
An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data
Effects of surface chemistry on hot corrosion life
Hot corrosion life prediction methodology based on a combination of laboratory test data and field service turbine components, which show evidence of hot corrosion, were examined. Components were evaluated by optical metallography, scanning electron microscopy (SEM), and electron micropulse (EMP) examination
Contrast Interferometry Using Bose-Einstein Condensates to Measure h/m and the Fine Structure Constant
The kinetic energy of an atom recoiling due to absorption of a photon was
measured as a frequency using an interferometric technique called ``contrast
interferometry''. Optical standing wave pulses were used as atom-optical
elements to create a symmetric three-path interferometer with a Bose-Einstein
condensate. The recoil phase accumulated in different paths was measured using
a single-shot detection technique. The scheme allows for additional photon
recoils within the interferometer and its symmetry suppresses several random
and systematic errors including those from vibrations and ac Stark shifts. We
have measured the photon recoil frequency of sodium to ppm precision, using
a simple realization of this scheme. Plausible extensions should yield a
sufficient precision to bring within reach a ppb-level determination of
and the fine structure constant
Chi_1 and Polarisation Asymmetries for Quarkonia at High Orders in Non-relativistic QCD
We study doubly polarised asymmetries of c-cbar and b-bbar mesons in hadro-
and photo-production at low transverse momentum in non-relativistic QCD to high
orders in the relative velocity of the pair, v. We give the complete set of
expressions required for the asymmetries up to order v^9. The asymmetries in
the production of eta_{c,b} states are a stable measure of the polarised gluon
densities. The asymmetries for chi_{c,b}, J/psi, psi', and the various Upsilon
states are stringent tests of the NRQCD scaling relations.Comment: 21 pages LaTeX including 2 figure
- …