78,921 research outputs found

    Double-beam optical method and apparatus for measuring thermal diffusivity and other molecular dynamic processes in utilizing the transient thermal lens effect

    Get PDF
    A sample material was irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses was absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate was chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (cw) laser beam, irradiated the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated

    Cohesion of BaReH9_9 and BaMnH9_9: Density Functional Calculations and Prediction of (MnH9)2_9)^{2-} Salts

    Full text link
    Density functional calculations are used to calculate the structural and electronic properties of BaReH9_9 and to analyze the bonding in this compound. The high coordination in BaReH9_9 is due to bonding between Re 5dd states and states of dd-like symmetry formed from combinations of H ss orbitals in the H9_9 cage. This explains the structure of the material, its short bond lengths and other physical properties, such as the high band gap. We compare with results for hypothetical BaMnH9_9, which we find to have similar bonding and cohesion to the Re compound. This suggests that it may be possible to synthesize (MnH9)2_9)^{2-} salts. Depending on the particular cation, such salts may have exceptionally high hydrogen contents, in excess of 10 weight

    Broadband optical radiation detector

    Get PDF
    A method and apparatus for detecting optical radiation by optically monitoring temperature changes in a microvolume caused by absorption of the optical radiation to be detected is described. More specifically, a thermal lens forming material is provided which has first and second opposite, substantially parallel surfaces. A reflective coating is formed on the first surface, and a radiation absorbing coating is formed on the reflective coating. Chopped, incoming optical radiation to be detected is directed to irradiate a small portion of the radiation absorbing coating. Heat generated in this small area is conducted to the lens forming material through the reflective coating, thereby raising the temperature of a small portion of the lens forming material and causing a thermal lens to be formed therein

    Lattice Boltzmann Simulations of Droplet formation in confined Channels with Thermocapillary flows

    Full text link
    Based on mesoscale lattice Boltzmann simulations with the "Shan-Chen" model, we explore the influence of thermocapillarity on the break-up properties of fluid threads in a microfluidic T-junction, where a dispersed phase is injected perpendicularly into a main channel containing a continuous phase, and the latter induces periodic break-up of droplets due to the cross-flowing. Temperature effects are investigated by switching on/off both positive/negative temperature gradients along the main channel direction, thus promoting a different thread dynamics with anticipated/delayed break-up. Numerical simulations are performed at changing the flow-rates of both the continuous and dispersed phases, as well as the relative importance of viscous forces, surface tension forces and thermocapillary stresses. The range of parameters is broad enough to characterize the effects of thermocapillarity on different mechanisms of break-up in the confined T-junction, including the so-called "squeezing" and "dripping" regimes, previously identified in the literature. Some simple scaling arguments are proposed to rationalize the observed behaviour, and to provide quantitative guidelines on how to predict the droplet size after break-up.Comment: 18 pages, 9 figure

    Entropy production in systems with unidirectional transitions

    Full text link
    The entropy production is one of the most essential features for systems operating out of equilibrium. The formulation for discrete-state systems goes back to the celebrated Schnakenberg's work and hitherto can be carried out when for each transition between two states also the reverse one is allowed. Nevertheless, several physical systems may exhibit a mixture of both unidirectional and bidirectional transitions, and how to properly define the entropy production in this case is still an open question. Here, we present a solution to such a challenging problem. The average entropy production can be consistently defined, employing a mapping that preserves the average fluxes, and its physical interpretation is provided. We describe a class of stochastic systems composed of unidirectional links forming cycles and detailed-balanced bidirectional links, showing that they behave in a pseudo-deterministic fashion. This approach is applied to a system with time-dependent stochastic resetting. Our framework is consistent with thermodynamics and leads to some intriguing observations on the relation between the arrow of time and the average entropy production for resetting events.Comment: (Accepted for publication in Physical Review Research

    Pulsar Scintillation and the Local Bubble

    Get PDF
    We present here the results from an extensive scintillation study of twenty pulsars in the dispersion measure (DM) range 3 - 35 pc cm^-3 caried out using the Ooty Radio Telescope (ORT) at 327 MHz, to investigate the distribution of ionized material in the local interstellar medium. Observations were made during the period January 1993 to August 1995, in which the dynamic scintillation spectra of these pulsars were regularly monitored over 10 - 90 epochs spanning 100 days. Reliable and accurate estimates of strengths of scattering have been deduced from the scintillation parameters averaged out for their long-term fluctuations arising from refractive scintillation (RISS) effects. Our analysis reveals several anomalies in the scattering strength, which suggest tht the distribution of scattering material in the Solar neighborhood is not uniform. We have modelled these anomalous scattering effects in terms of inhomogeneities in the distribution of electron dnsity fluctuations in the local interstellar medium (LISM). Our model suggests the presence of a low density bubble surrounded by a shell of much higher density fluctuations. We are able to put constraints on geometrical and scattering properties of such a structure, and find it to be morphologically similar to the Local Bubble known from other studies.Comment: 35 pages, 12 figure

    Long-Term Scintillation Studies of Pulsars: III. Testing Theoretical Models of Refractive Scintillation

    Get PDF
    Refractive interstellar scintillation (RISS) is thought to be the cause behind a variety of phenomena seen at radio wavelengths in pulsars and compact radio sources. Though there is substantial observational data to support several consequences of it, the quantitative predictions from theories have not been thoroughly tested. In this paper, data from our long-term scintillation study of 18 pulsars are used to test the predictions. The fluctuations of decorrelation bandwidth (νd\nu_d), scintillation time scale (τd\tau_d) and flux density (F) are examined for their cross-correlations and compared with the predictions. The theory predicts a strong correlation between νd\nu_d and τd\tau_d, and strong anti-correlations between νd\nu_d and F, and τd\tau_d and F. For 5 pulsars, we see a reasonable agreement. There is considerable difficulty in reconciling the results for the rest of the pulsars. Our analysis shows the underlying noise sources can sometimes reduce the correlation, but cannot cause an absence of correlation. It is also unlikely that the poor flux correlations arise from a hitherto unrecognized intrinsic flux variations. For PSR B0834+06, which shows anomalous behaviour of persistent drift slopes, positive correlation is found between τd\tau_d and the drift-corrected νd\nu_d. Many pulsars show an anti-correlation between νd\nu_d and the drift slope, and this is in accordance with the simple models of RISS. The detections of correlated variations of observables and a reasonable agreement between the predicted and measured correlations for some pulsars confirm RISS as the primary cause of the observed fluctuations. However, the complexity seen with the detailed results suggests the necessity of more comprehensive theoretical treatments for describing refractive fluctuations and their correlations.Comment: 27 pages, 6 Figures, 6 Tables. Accepted for publication in The Astrophysical Journa
    corecore