143,888 research outputs found
Deformation and break-up of viscoelastic droplets in confined shear flow
The deformation and break-up of Newtonian/viscoelastic droplets are studied
in confined shear flow. Our numerical approach is based on a combination of
Lattice-Boltzmann models (LBM) and finite difference schemes, the former used
to model two immiscible fluids with variable viscous ratio, and the latter used
to model the polymer dynamics. The kinetics of the polymers is introduced using
constitutive equations for viscoelastic fluids with finitely extensible
non-linear elastic dumbbells with Peterlin's closure (FENE-P). We quantify the
droplet response by changing the polymer relaxation time , the maximum
extensibility  of the polymers, and the degree of confinement, i.e. the
ratio of the droplet diameter to gap spacing. In unconfined shear flow, the
effects of droplet viscoelasticity on the critical Capillary number
\mbox{Ca}_{\mbox{\tiny{cr}}} for break-up are moderate in all cases studied.
However, in confined conditions a different behaviour is observed: the critical
Capillary number of a viscoelastic droplet increases or decreases, depending on
the maximum elongation of the polymers, the latter affecting the extensional
viscosity of the polymeric solution. Force balance is monitored in the
numerical simulations to validate the physical picture.Comment: 34 Pages, 13 Figures. This Work applies the Numerical Methodology
  described in arXiv:1406.2686 to the Problem of Droplet Break-up in confined
  microchannel
Masses and Strong Decay properties of Radially Excited Bottom states B(2S)and B(2P) with their Strange Partners Bs(2S) and Bs(2P)
In this paper, we analyzed the experimentally available radially excited
charm mesons to predict the similar spectra for the n=2 bottom mesons. In the
heavy quark effective theory, we explore the flavor independent parameters to
calculate the masses for the experimentally unknown n=2 bottom mesons B(2S),
B(2P), Bs(2S) and Bs(2P). We have also analyzed these bottom masses by applying
the QCD and 1/mQ corrections to the lagrangian leading to the modification of
flavor symmetry parameters as. Further strong decay widths are determined using
these calculated masses to check the sensitivity of these corrections for these
radially excited mesons. The calculated decay widths are in the form of strong
coupling constant geHH, egSH and egTH. We concluded that these corrections are
less sensitive for n=2 masses as compared to n=1 masses. Branching ratios and
branching fractions of these states are calculated to have a deeper
understanding of these states. These predicted values can be confronted with
the future experimental data.Comment: 11 Pages, 6 Table
Conditional Entropy based User Selection for Multiuser MIMO Systems
We consider the problem of user subset selection for maximizing the sum rate
of downlink multi-user MIMO systems. The brute-force search for the optimal
user set becomes impractical as the total number of users in a cell increase.
We propose a user selection algorithm based on conditional differential
entropy. We apply the proposed algorithm on Block diagonalization scheme.
Simulation results show that the proposed conditional entropy based algorithm
offers better alternatives than the existing user selection algorithms.
Furthermore, in terms of sum rate, the solution obtained by the proposed
algorithm turns out to be close to the optimal solution with significantly
lower computational complexity than brute-force search.Comment: 4 pages, 3 figure
Fe and N self-diffusion in non-magnetic Fe:N
Fe and N self-diffusion in non-magnetic FeN has been studied using neutron
reflectivity. The isotope labelled multilayers, FeN/57Fe:N and Fe:N/Fe:15N were
prepared using magnetron sputtering. It was remarkable to observe that N
diffusion was slower compared to Fe while the atomic size of Fe is larger
compared to N. An attempt has been made to understand the diffusion of Fe and N
in non-magnetic Fe:N
Reactor for simulation and acceleration of solar ultraviolet damage
An environmental test chamber providing acceleration of UV radiation and precise temperature control (+ or -)1 C was designed, constructed and tested. This chamber allows acceleration of solar ultraviolet up to 30 suns while maintaining temperature of the absorbing surface at 30 C - 60 C. This test chamber utilizes a filtered medium pressure mercury arc as the source of radiation, and a combination of selenium radiometer and silicon radiometer to monitor solar ultraviolet (295-340 nm) and total radiant power output, respectively. Details of design and construction and operational procedures are presented along with typical test data
- …
