179 research outputs found

    Engineered Microbes for Pigment Production Using Waste Biomass

    Get PDF
    Received: February 04, 2020; Revised: March 08, 2020; Accepted: March 16, 2020.Agri-food waste biomass is the most abundant organic waste and has high valorisation potential for sustainable bioproducts development. These wastes are not only recyclable in nature but are also rich sources of bioactive carbohydrates, peptides, pigments, polyphenols, vitamins, natural antioxidants, etc. Bioconversion of agri-food waste to value-added products is very important towards zero waste and circular economy concepts. To reduce the environmental burden, food researchers are seeking strategies to utilize this waste for microbial pigments production and further biotechnological exploitation in functional foods or value-added products. Microbes are valuable sources for a range of bioactive molecules, including microbial pigments production through fermentation and/or utilisation of waste. Here, we have reviewed some of the recent advancements made in important bioengineering technologies to develop engineered microbial systems for enhanced pigments production using agrifood wastes biomass/by-products as substrates in a sustainable way.MS, VKG and RB acknowledge ERA Chair for Food (By-) Products Valorization Technologies of the Estonian University of Life Sciences (VALORTECH) which has received funding from the European Union’s Horizon 2020 research and innovation program (under grant agreement No. 810630)

    Exploring the role of nanocellulose as potential sustainable material for enhanced oil recovery:New paradigm for a circular economy

    Get PDF
    Presently, due to growing global energy demand and depletion of existing oil reservoirs, oil industry is focussing on development of novel and effective ways to enhance crude oil recovery and exploration of new oil reserves, which are typically found in challenging environment and require deep drilling in high temperature and high-pressure regime. The nanocelluloses with numerous advantages such as high temperature and pressure stability, ecofriendly nature, excellent rheology modifying ability, interfacial tension reduction capability, etc., have shown a huge potential in oil recovery over conventional chemicals and macro/micro sized biopolymers-based approach. In present review, an attempt has been made to thoroughly investigate the potential of nanocellulose (cellulose nanocrystals/nanofibers) in development of drilling fluid and in enhancement of oil recovery. The impact of various factors such as nanocellulose shape, charge density, inter-particle or inter-fibers interactions after surface functionalization, rheometer geometries, additives, post processing techniques, etc., which provides insight into the attributes of nanocellulose suspension and exemplify their behaviour during oil recovery have also been reviewed and discussed. Finally, the conclusion and challenges in utility of nanocellulose for oilfield applications are addressed. Knowing how to adjust/quantify nanocrystals/nanofibers shape and size; and monitor their interactions might promote their utility in oilfield industry.</p

    Metatranscriptome Analysis Deciphers Multifunctional Genes and Enzymes Linked With the Degradation of Aromatic Compounds and Pesticides in the Wheat Rhizosphere

    Get PDF
    Agricultural soils are becoming contaminated with synthetic chemicals like polyaromatic compounds, petroleum hydrocarbons, polychlorinated biphenyls (PCBs), phenols, herbicides, insecticides and fungicides due to excessive dependency of crop production systems on the chemical inputs. Microbial degradation of organic pollutants in the agricultural soils is a continuous process due to the metabolic multifunctionalities and enzymatic capabilities of the soil associated communities. The plant rhizosphere with its complex microbial inhabitants and their multiple functions, is amongst the most live and dynamic component of agricultural soils. We analyzed the metatranscriptome data of 20 wheat rhizosphere samples to decipher the taxonomic microbial communities and their multifunctionalities linked with the degradation of organic soil contaminants. The analysis revealed a total of 21 different metabolic pathways for the degradation of aromatic compounds and 06 for the xenobiotics degradation. Taxonomic annotation of wheat rhizosphere revealed bacteria, especially the Proteobacteria, actinobacteria, firmicutes, bacteroidetes, and cyanobacteria, which are shown to be linked with the degradation of aromatic compounds as the dominant communities. Abundance of the transcripts related to the degradation of aromatic amin compounds, carbazoles, benzoates, naphthalene, ketoadipate pathway, phenols, biphenyls and xenobiotics indicated abundant degradation capabilities in the soils. The results highlighted a potentially dominant role of crop rhizosphere associated microbial communities in the remediation of contaminant aromatic compounds

    Sustainable Phenylalanine-Derived SAILs for Solubilization of Polycyclic Aromatic Hydrocarbons

    Get PDF
    The solubilization capacity of a series of sustainable phenylalanine-derived surface-active ionic liquids (SAILs) was evaluated towards polycyclic aromatic hydrocarbons—naphthalene, anthracene and pyrene. The key physico-chemical parameters of the studied systems (critical micelle concentration, spectral properties, solubilization parameters) were determined, analyzed and compared with conventional cationic surfactant, CTABr. For all studied PAH solubilization capacity increases with extension of alkyl chain length of PyPheOCn SAILs reaching the values comparable to CTABr for SAILs with n = 10–12. A remarkable advantage of the phenylalanine-derived SAILs PyPheOCn and PyPheNHCn is a possibility to cleave enzymatically ester and/or amide bonds under mild conditions, to separate polycyclic aromatic hydrocarbons in situ. A series of immobilized enzymes was tested to determine the most suitable candidates for tunable decomposition of SAILs. The decomposition pathway could be adjusted depending on the choice of the enzyme system, reaction conditions, and selection of SAILs type. The evaluated systems can provide selective cleavage of the ester and amide bond and help to choose the optimal decomposition method of SAILs for enzymatic recycling of SAILs transformation products or as a pretreatment towards biological mineralization. The concept of a possible practical application of studied systems for PAHs solubilization/separation was also discussed focusing on sustainability and a green chemistry approach

    Nickel ferrite nanoparticles induced improved fungal cellulase production using residual algal biomass and subsequent hydrogen production following dark fermentation

    Get PDF
    The present study reports nickel ferrite nanoparticles (NiFe2O4 NPs) induced enhanced production of crude cellulase enzyme using residual algal biomass of cyanobacteria Lyngbya limnetica as substrate. It is noticed that the residual algal substrate and NiFe2O4 NPs mediated crude cellulase exhibits nearly 2.5 fold enhanced filter paper activity after 72 h along with better efficiency in terms of pH and thermal stability as compared to the control system. Further, NiFe2O4 NPs mediated crude cellulase enzyme was employed for the enzymatic hydrolysis of rice straw to produce sugar hydrolyzate. Subsequently, using bacterial strains Bacillus subtilisPF_1 the cumulative hydrogen ~ 1820 mL/L has been produced under the dark fermentation.</p

    Recent Advancements in the Technologies Detecting Food Spoiling Agents

    Get PDF
    To match the current life-style, there is a huge demand and market for the processed food whose manufacturing requires multiple steps. The mounting demand increases the pressure on the producers and the regulatory bodies to provide sensitive, facile, and cost-effective methods to safeguard consumers’ health. In the multistep process of food processing, there are several chances that the food-spoiling microbes or contaminants could enter the supply chain. In this contest, there is a dire necessity to comprehend, implement, and monitor the levels of contaminants by utilizing various available methods, such as single-cell droplet microfluidic system, DNA biosensor, nanobiosensor, smartphone-based biosensor, aptasensor, and DNA microarray-based methods. The current review focuses on the advancements in these methods for the detection of food-borne contaminants and pathogens
    • …
    corecore