54,219 research outputs found

    Linear Phase Second Order Recursive Digital Integrators and Differentiators

    Get PDF
    In this paper, design of linear phase second order recursive digital integrators and differentiators is discussed. New second order integrators have been designed by using Genetic Algorithm (GA) optimization method. Thereafter, by modifying the transfer function of these integrators appropriately, new digital differentiators have been obtained. The proposed digital integrators and differentiators accurately approximate the ideal ones and have linear phase response over almost entire Nyquist frequency range. The proposed operators also outperform the existing operators in terms of both magnitude and phase response

    Heavy Quarkonium Potential Model and the 1P1{}^1P_1 State of Charmonium

    Full text link
    A theoretical explanation of the observed splittings among the P~states of charmonium is given with the use of a nonsingular potential model for heavy quarkonia. We also show that the recently observed mass difference between the center of gravity of the 3PJ{}^3P_J states and the 1P1{}^1P_1 state of ccˉc\bar{c} does not provide a direct test of the color hyperfine interaction in heavy quarkonia. Our theoretical value for the mass of the 1P1{}^1P_1 state is in agreement with the experimental result, and its E1 transition width is 341.8~keV. The mass of the ηc\eta_c' state is predicted to be 3622.3~MeV.Comment: 15 page REVTEX documen

    Bc spectroscopy in a quantum-chromodynamic potential model

    Full text link
    We have investigated BcB_c spectroscopy with the use of a quantum-chromodynamic potential model which was recently used by us for the light-heavy quarkonia. We give our predictions for the energy levels and the EE1 transition widths. We also find, rather surprisingly, that although BcB_c is not a light-heavy system, the heavy quark effective theory with the inclusion of the mb1m_b^{-1} and mb1lnmbm_b^{-1}\ln m_b corrections is as successful for BcB_c as it is for BB and BsB_s.Comment: 10 page ReVTeX pape

    Quantum-Chromodynamic Potential Model for Light-Heavy Quarkonia and the Heavy Quark Effective Theory

    Get PDF
    We have investigated the spectra of light-heavy quarkonia with the use of a quantum-chromodynamic potential model which is similar to that used earlier for the heavy quarkonia. An essential feature of our treatment is the inclusion of the one-loop radiative corrections to the quark-antiquark potential, which contribute significantly to the spin-splittings among the quarkonium energy levels. Unlike ccˉc\bar{c} and bbˉb\bar{b}, the potential for a light-heavy system has a complicated dependence on the light and heavy quark masses mm and MM, and it contains a spin-orbit mixing term. We have obtained excellent results for the observed energy levels of D0D^0, DsD_s, B0B^0, and BsB_s, and we are able to provide predicted results for many unobserved energy levels. Our potential parameters for different quarkonia satisfy the constraints of quantum chromodynamics. We have also used our investigation to test the accuracy of the heavy quark effective theory. We find that the heavy quark expansion yields generally good results for the B0B^0 and BsB_s energy levels provided that M1M^{-1} and M1lnMM^{-1}\ln M corrections are taken into account in the quark-antiquark interactions. It does not, however, provide equally good results for the energy levels of D0D^0 and DsD_s, which indicates that the effective theory can be applied more accurately to the bb quark than the cc quark.Comment: 17 pages of LaTeX. To appear in Physical Review D. Complete PostScript file is available via WWW at http://gluon.physics.wayne.edu/wsuhep/jim/heavy.p

    Acoustic Echo and Noise Cancellation System for Hand-Free Telecommunication using Variable Step Size Algorithms

    Get PDF
    In this paper, acoustic echo cancellation with doubletalk detection system is implemented for a hand-free telecommunication system using Matlab. Here adaptive noise canceller with blind source separation (ANC-BSS) system is proposed to remove both background noise and far-end speaker echo signal in presence of double-talk. During the absence of double-talk, far-end speaker echo signal is cancelled by adaptive echo canceller. Both adaptive noise canceller and adaptive echo canceller are implemented using LMS, NLMS, VSLMS and VSNLMS algorithms. The normalized cross-correlation method is used for double-talk detection. VSNLMS has shown its superiority over all other algorithms both for double-talk and in absence of double-talk. During the absence of double-talk it shows its superiority in terms of increment in ERLE and decrement in misalignment. In presence of double-talk, it shows improvement in SNR of near-end speaker signal

    Knowledge Discovery Using Topological Analysis for Building Sensor Data

    Get PDF
    Distributed sensor networks are at the heart of smart buildings, providing greater detail and valuable insights into their energy consumption patterns. The problem is particularly complex for older buildings retrofitted with Building Energy Management Systems (BEMS) where extracting useful knowledge from large sensor data streams without full understanding of the underlying system variables is challenging. This paper presents an application of Q-Analysis, a computationally simple topological approach for summarizing large sensor data sets and revealing useful relationships between different variables. Q-Analysis can be used to extract novel structural features called Q-vectors. The Q-vector magnitude visualizations are shown to be very effective in providing insights on macro behaviors, i.e., building floor behaviors in the present case, which are not evident from the use of unsupervised learning algorithms applied on individual terminal units. It has been shown that the building floors exhibited distinct behaviors that are dependent on the set-point distribution, but independent of the time and season of the year
    corecore