55,150 research outputs found
Dynamical cluster-decay model for hot and rotating light-mass nuclear systems, applied to low-energy S + Mg Ni reaction
The dynamical cluster-decay model (DCM) is developed further for the decay of
hot and rotating compound nuclei (CN) formed in light heavy-ion reactions. The
model is worked out in terms of only one parameter, namely the neck-length
parameter, which is related to the total kinetic energy TKE(T) or effective
Q-value at temperature T of the hot CN, defined in terms of the
both the light-particles (LP), with 4, Z 2, as well as the
complex intermediate mass fragments (IMF), with , is
considered as the dynamical collective mass motion of preformed clusters
through the barrier. Within the same dynamical model treatment, the LPs are
shown to have different characteristics as compared to the IMFs. The systematic
variation of the LP emission cross section , and IMF emission
cross section , calculated on the present DCM match exactly the
statistical fission model predictions. It is for the first time that a
non-statistical dynamical description is developed for the emission of
light-particles from the hot and rotating CN. The model is applied to the decay
of Ni formed in the S + Mg reaction at two incident
energies E = 51.6 and 60.5 MeV. Both the IMFs and average
spectra are found to compare reasonably nicely with the experimental data,
favoring asymmetric mass distributions. The LPs emission cross section is shown
to depend strongly on the type of emitted particles and their multiplicities
A three-node C deg element for analysis of laminated composite sandwich shells
A three-node flat shell element with C deg rotation fields has been developed for analysis of arbitrary composite shells. The element may consist of any number of orthotropic layers, each layer having different material properties and angular orientation. The formulation includes coupling between bending and extension, which is essential for analysis of unsymmetric laminates. Shearing deflections are included, since laminated and sandwich construction frequently results in shear stiffness much smaller than bending stiffness. Formulation of the element is straightforward, and calculation of its stiffness matrix is simple and fast. Convergence of solutions with mesh refinement is uniform for both thin and thick shells and is insensitive to element shape, although not as rapid as some other elements that lack one or more capabilities of the newly developed element. An experimental verification of the shall element is reported in the appendix
Obtaining pressure versus concentration phase diagrams in spin systems from Monte Carlo simulations
We propose an efficient procedure for determining phase diagrams of systems
that are described by spin models. It consists of combining cluster algorithms
with the method proposed by Sauerwein and de Oliveira where the grand canonical
potential is obtained directly from the Monte Carlo simulation, without the
necessity of performing numerical integrations. The cluster algorithm presented
in this paper eliminates metastability in first order phase transitions
allowing us to locate precisely the first-order transitions lines. We also
produce a different technique for calculating the thermodynamic limit of
quantities such as the magnetization whose infinite volume limit is not
straightforward in first order phase transitions. As an application, we study
the Andelman model for Langmuir monolayers made of chiral molecules that is
equivalent to the Blume-Emery-Griffiths spin-1 model. We have obtained the
phase diagrams in the case where the intermolecular forces favor interactions
between enantiomers of the same type (homochiral interactions). In particular,
we have determined diagrams in the surface pressure versus concentration plane
which are more relevant from the experimental point of view and less usual in
numerical studies
Multi-wavelength Temporal Variability of the Blazar 3C 454.3 during 2014 Activity Phase
We present a multi-wavelength temporal analysis of the blazar 3C 454.3 during
the high -ray active period from May-December, 2014. Except for X-rays,
the period is well sampled at near-infrared (NIR)-optical by the \emph{SMARTS}
facility and the source is detected continuously on daily timescale in the
\emph{Fermi}-LAT -ray band. The source exhibits diverse levels of
variability with many flaring/active states in the continuously sampled
-ray light curve which are also reflected in the NIR-optical light
curves and the sparsely sampled X-ray light curve by the \emph{Swift}-XRT.
Multi-band correlation analysis of this continuous segment during different
activity periods shows a change of state from no lags between IR and
-ray, optical and -ray, and IR and optical to a state where
-ray lags the IR/optical by 3 days. The results are consistent
with the previous studies of the same during various -ray flaring and
active episodes of the source. This consistency, in turn, suggests an extended
localized emission region with almost similar conditions during various
-ray activity states. On the other hand, the delay of -ray with
respect to IR/optical and a trend similar to IR/optical in X-rays along with
strong broadband correlations favor magnetic field related origin with X-ray
and -ray being inverse Comptonized of IR/optical photons and external
radiation field, respectively.Comment: 15 pages, 5 figures, 1 table, MNRAS accepte
- …