342 research outputs found

    Separating Auxiliary Arity Hierarchy of First-Order Incremental Evaluation Using (3+1)-ary Input Relations

    Get PDF
    Presents a first-order incremental evaluation system that uses first-order queries to maintain a database view defined by a non-first-order query. Reduction of the arity of queries to understand the power of foies; Use of a key lemma for proving a query which encodes the multiple parity problem

    Performance evaluation of Compass dual-mode receiver

    Get PDF
    Recently, navigation technology based on satellite navigation system has got more and more attention in international society because of its great values for both military and civil application. While navigation signal simulator which can generate satellite navigation signals and simulate different scenarios, not only satisfy cooperating test requirements of ground operation control system, test of the signal receivers, but also been playing a very important role in the development, test and evaluation of different navigation receiver, such as radio determination satellite system (RDSS) receiver, radio navigation satellite system (RNSS) receiver and dual-mode receivers. It is an indispensable tool for the design of the receivers.Compared to other satellite navigation systems, such as Global Positioning System (GPS) and GLobal Navigation Satellite System (GLONASS), BeiDou Navigation Satellite System (Compass/BDS) have some different unique characteristics, especially in RDSS determination. Firstly, the principle of comprehensive RDSS position and report is presented. Then function architecture of Compass signal simulator and requirements of the dynamic navigation signal simulation are analyzed. Finally, two key mathematical models are established to simulate the signals arriving at the receiver antenna for dual-mode receiver test, which are: the transmitting time iterative model and efficient satellite orbit approximation model. The results show that the Compass dual-mode simulator can satisfy dual-mode receiver’s test requirements

    A study on capacity of signalized intersection under snow-ice conditions based on classical model modification

    Get PDF
    Abstract As the common climatic phenomena frequently occurring in northern China in winter, snow and ice weathers have made great influence to the capacity of signalized intersection. By starting from snow and ice conditions, this paper makes improved correction about the calculation of capacity of signalized intersection respectively based on HCM Method and Method of Stopping Line. On the basis of HCM Method, the author comprehensively considers factors influencing the capacity of signalized intersection under snow and ice conditions, and calibrates the integrated parameters influencing the capacity of signalized intersection under snow and ice conditions; grounded on Method of Stopping Line, the author then calibrates various parameters and makes classified study about each parameter separately according to snow weather and freezing condition, finally giving out parameter values under various states. With the help of the revised model, the paper calculates the capacity of signalized intersection and then makes the comparison between traffic capacities under various snow and ice conditions and that with capacity of signalized intersection under normal weather, hence with strong practical significance

    Observation of coherent oscillation in single-passage Landau-Zener transitions

    Get PDF
    Landau-Zener transition (LZT) has been explored in a variety of physical systems for coherent population transfer between different quantum states. In recent years, there have been various proposals for applying LZT to quantum information processing because when compared to the methods using ac pulse for coherent population transfer, protocols based on LZT are less sensitive to timing errors. However, the effect of finite range of qubit energy available to LZT based state control operations has not been thoroughly examined. In this work, we show that using the well-known Landau-Zener formula in the vicinity of an avoided energy-level crossing will cause considerable errors due to coherent oscillation of the transition probability in a single-passage LZT experiment. The data agree well with the numerical simulations which take the transient dynamics of LZT into account. These results not only provide a closer view on the issue of finite-time LZT but also shed light on its effects on the quantum state manipulation.Comment: 10 pages,5 figure

    Vehicle Routing Problems with Fuel Consumption and Stochastic Travel Speeds

    Get PDF
    Conventional vehicle routing problems (VRP) always assume that the vehicle travel speed is fixed or time-dependent on arcs. However, due to the uncertainty of weather, traffic conditions, and other random factors, it is not appropriate to set travel speeds to fixed constants in advance. Consequently, we propose a mathematic model for calculating expected fuel consumption and fixed vehicle cost where average speed is assumed to obey normal distribution on each arc which is more realistic than the existing model. For small-scaled problems, we make a linear transformation and solve them by existing solver CPLEX, while, for large-scaled problems, an improved simulated annealing (ISA) algorithm is constructed. Finally, instances from real road networks of England are performed with the ISA algorithm. Computational results show that our ISA algorithm performs well in a reasonable amount of time. We also find that when taking stochastic speeds into consideration, the fuel consumption is always larger than that with fixed speed model

    High-frequency modeling and filter design for PWM drives with long cables

    Get PDF
    Aiming at the problems emerging in a pulse width modulation (PWM) drive system with long cables, the accurate modeling of power cables is the premise for predicting and analyzing these relevant phenomena, and a proper filter design is the key solution to these problems. This paper proposes high-frequency cable models to represent these frequency-dependent characteristics, especially for the high-frequency resistance of cables, which is an easily overlooked factor that determines the damping of overvoltage. The proposed models can be used for accurately representing the cable characteristics in a wide frequency range, and correctly simulating the differential mode (DM) overvoltage and common mode (CM) current, including the peak value, oscillation frequency, and damping of the transient waveform. In addition, improved filter networks are proposed to suppress the DM voltage and CM current, with the merit of low losses, small volume, and excellent abilities for suppressing overvoltage. The proposed cable models and the filter design were validated in a 750 W PWM drive system with 200 m power cables

    Simulating the Kibble-Zurek mechanism of the Ising model with a superconducting qubit system

    Get PDF
    The Kibble-Zurek mechanism (KZM) predicts the density of topological defects produced in the dynamical processes of phase transitions in systems ranging from cosmology to condensed matter and quantum materials. The similarity between KZM and the Landau-Zener transition (LZT), which is a standard tool to describe the dynamics of some non-equilibrium physics in contemporary physics, is being extensively exploited. Here we demonstrate the equivalence between KZM in the Ising model and LZT in a superconducting qubit system. We develop a time-resolved approach to study quantum dynamics of LZT with nano-second resolution. By using this technique, we simulate the key features of KZM in the Ising model with LZT, e.g., the boundary between the adiabatic and impulse regions, the freeze-out phenomenon in the impulse region, especially, the scaling law of the excited state population as the square root of the quenching rate. Our results supply the experimental evidence of the close connection between KZM and LZT, two textbook paradigms to study the dynamics of the non-equilibrium phenomena.Comment: Title changed, authors added, and some experimental data update

    Efficient Computation of Iceberg Cubes by Bounding Aggregate Functions

    Full text link
    corecore