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Conventional vehicle routing problems (VRP) always assume that the vehicle travel speed is fixed or time-dependent on arcs.
However, due to the uncertainty of weather, traffic conditions, and other random factors, it is not appropriate to set travel speeds
to fixed constants in advance. Consequently, we propose a mathematic model for calculating expected fuel consumption and fixed
vehicle cost where average speed is assumed to obey normal distribution on each arc which is more realistic than the existing
model. For small-scaled problems, we make a linear transformation and solve them by existing solver CPLEX, while, for large-
scaled problems, an improved simulated annealing (ISA) algorithm is constructed. Finally, instances from real road networks of
England are performed with the ISA algorithm. Computational results show that our ISA algorithm performs well in a reasonable
amount of time. We also find that when taking stochastic speeds into consideration, the fuel consumption is always larger than that

with fixed speed model.

1. Introduction

The vehicle routing problem (VRP) is one of the most
important and studied combinatorial optimization problems
[1]. It has gained great attentions from many researchers,
especially in distribution and logistics management fields.
More than fifty years have elapsed since Dantzig and Ramser
[2] firstly introduced the problem in in 1959. They described
a real-world application concerning the delivery of gasoline
to service stations and proposed the first mathematical pro-
gramming formulation and algorithmic approach. Following
this seminal paper, hundreds of models and algorithms
were proposed for the optimal and approximate solution of
the different versions of VRP. Then in order to be better
aligned with the real-world applications, many different VRP
versions have been studied. The most common version is
the CVRP [3], where each vehicle has limited load capacity.
The VRP with Time Window (VRPTW) [4-6] aims to find
optimal route sets with minimum total travel cost while
serving each customer within specified time window. Other
extended versions include VRP with backhauls [7], VRP
with pickups and deliveries [8], and the multidepot VRP
[9].

The deterministic VRP cannot cover all the situations
in reality while considering stochastic VRP components.
Consequently, Stochastic VRP are developed. For exam-
ple, Ritzinger et al. [10] made a detailed review of the
stochastic VRP. Mehrjerdi [11] combined chance constrained
programming and multiple objective programming to obtain
satisfactory solutions. Tas et al. [12, 13], Ehmke et al. [14], and
Laporte et al. [15] put forward different heuristic methods for
VPR with stochastic travel time and time windows. Marinakis
etal. [16] developed a particle swarm algorithm for VRP with
stochastic demands. For more stochastic demand results, one
may refer to [17-19].

Based on the NP hardness of VRP, multiple heuristic
algorithms have been put forward to solve this problem. Xiao
and Konak [20] present simulating annealing algorithm to
solve the green vehicle routing and scheduling problem with
hierarchical objectives and weighted tardiness. Kondekar et
al. [21] provide a mapreduce based hybrid genetic solution
for solving large-scale vehicle routing problems in dynamic
network with fluctuant link travel time. Neural network is
also applied to solve stochastic multiconstraint problems with
different time-scales; see Zhang et al. [22] and Meyer-Bise
et al. [23].
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FIGURE 1: llustration of a delivery.

Demir et al. [24] proposed an adaptive large neigh-
borhood search algorithm (ALNS) to minimize the fuel
consumption and the driving time with Pareto optimality.
Garaix et al. [25] proposed a column generation algorithm
for a dial-a-ride problem.

Due to the uncertain traffic factors, such as unexpected
workload or bad weather, stochastic VRP has attracted more
and more attentions. Cao et al. [26] proposed a partial
Lagrange multiplier method. Ishigaki [27] considered a
dynamic collection plan with stochastic demand and apply
their search algorithm to an actual trash collection problem.
Novel applications of the well-established problem can also
be found in optical flow and vehicle systems [28-30].

In most literatures, travel speeds are assumed to be fixed
or time-dependent (see, e.g., [31, 32]). However, in practice,
due to the uncertainty of weather, traffic conditions, and other
random factors, it is not appropriate to set travel speeds to
be fixed constants in advance. The interest in stochastic VRP
in this paper is motivated by both its practical relevance
and its considerable difficulty: large VRP instances may be
solved to optimality only in particular cases. Therefore, we
study vehicle routing problems with stochastic travel speeds.
Moreover, as each arc has limited speed and other random
factors, the average speed of the same type of vehicles on the
same arc approximately obeys normal distribution.

Figure 1 is an illustration of this VPR with stochastic
average travel speed. Assume that a logistics company owns a
fleet of trucks and one truck delivers goods for customers 1, 2,
and 3. On the first day, the truck travels with an average speed
of 25 m/s onarc(0, 1). On the second day, it rains heavily when
it delivers goods for customer 1. The truck has to get over the
poor road conditions caused by the heavy rain; as a result, the
average speed it travels on arc(0, 1) becomes 15 m/s. Several
days later, a traffic accident occurred on arc(0, 1), so it may
travel with an average speed of 10 m/s. Practically, during a
relatively long period of time, the average speed on arc(0, 1)
is not fixed but with slight fluctuation. From this point of view,
the average speed is a stochastic variable. Here we assume that
the average speed on each arc follows normal distribution.

On the other hand, environmental issues have become
worldwide problems. In fact, fuel consumption of traffic
vehicles is a great contributor to CO,emissions which is the
main culprit of global warming [33, 34]. As a result, we take
the sum of the expected fuel consumption and total vehicle
cost as the objective to evaluate different routes. It has been
studied that the fuel consumed of a vehicle traveling along
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a route depends on many factors, which include distance,
load, speed, road conditions, and vehicle types. Models can
be found in Bektas and Laporte [34] and Xiao et al. [35].
Table 1 summarizes and compares the formulation of VRP
in the stream of uncertain VRP and green VRP.
Two main contributions of this paper are described as
follows:

(1) Based on the fuel consumption model introduced
by Bektas and Laporte [34], the fuel consumption is
a nonlinear function of travel speed, distance, and
vehicle load. Due to the stochasticity of the travel
speeds, we extend the model with stochastic speeds
considered.

(2) An ISA (simulated annealing algorithm) is presented
to solve large-scaled VRP problems.

The remainder of this paper is as follows. In Section 2,
the description and formulation of this model is provided.
In Section 3, we made a linearization of this problem.
Then Section 4 introduces the improved simulated annealing
algorithm with memory for optimizing the routing plan. In
Section 5, the computational experiments are performed.
Finally, Section 6 presents the conclusions and managerial
insights.

2. Problem Statement and Model Formulation

Generally speaking, logistics companies tend to make budget
decisions for a planning period; for example, they figure out
the amount of the fuel consumption, the cost of keeping,
and maintaining a fleet of vehicles in advance. Thus, we
try to develop a fuel consumption model and algorithm to
obtain more precise budgets. We use a digraph to describe the
vehicle routing problems with fuel consumption and stochas-
tic speeds (VRPFSV). Let a complete connected digraph
G = (N, A) be the logistics network with a node set N =
{0,1,...,n} and an arc set A = {(5,/) | i,j € N, i # j}.
Arc(i, j) represents the path from node i to node j. The depot
is denoted by node 0 and the other nodes in N/{0} represent
n customers with nonnegative demand ¢;. The depot owns
enough homogeneous vehicles with limited capacity Q, so the
total demands of customers assigned to the same vehicle must
be less than or equal to Q. Each route is finished by only one
vehicle and each customer is served only once. The average
travel speed v;; on arc(i, j) is stochastic. After serving all the
assigned customers, each vehicle has to return to the depot.

2.1. Assumptions and Notations. In this section, the assump-
tions and notations used in the model formulation are listed.
First, we assume the following:

(1) Each demand must be satisfied and each customer is
served only once.
(2) The depot owns enough homogenous vehicles.

(3) Each vehicle must departure from the depot and after
having served its customers it must return to the
depot.

(4) Time window constraints are not considered here.
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TABLE 1: A comparison of existing vehicle routing models.

Stochastic  Stochastic . L . Independent
. Stochastic ~ Objective . Time o .
Reference travel service . Weight . decision  Solution approach
. demand function window .
speed time variables
Figliozzi [36] No Yes No Vehicle .COSt; No Yes Rgute.s; New metaheuristic
travel time service time
Column
. . generation;
Errico etal. No Yes No Cost No Yes R(.)uteé’ branch-price-and-
(37] service time
cut
algorithms
Marinaki and Expected Glowworm swarm
. Marinakis No No Yes P Yes No Route S
Uncertain [38] length optimization
VRP Total
Sarasola et al dist(;rellce' Variable
' No No Yes ’ No No Route neighborhood
[39] lateness
search
penalty
Travel time;
earliness
Zh L i
ar[llgg]e ta No No Yes penalty; No Yes Route r?ﬁ;ﬁ?ﬂ
lateness prog 8
penalty
Driver cost;
operational )
Bektag and No No No cost; Yes Yes Rou’Fe, start CPLEX solver
Laporte [34] . time
emissions
cost
Driver cost;
Jabali et al fuel cost; Routes;
: No Yes No L No Yes speed; route Tabu search
[40]; emissions .
start time
cost
Xiao et al. No No No Fuel . Yes No Routes Slmula.ted
[35]; Kuo [31] consumption annealing
Green VRP Only two Emissions Routes;
Franceschetti yw . speed; MIP & DSOP
No fixed No cost; driver Yes Yes .
etal. [4]] ) departure algorithm
periods wage .
time
. . COZ Routes; travel
Xiao and No (time- emissions; distance in Dvnamic
Abdullah  dependent No No travel time; Yes Yes . v .
each period; programming
[42] speed) travel ;
. time
distance
Fuel Routes; MIP & improved
This paper Yes No No consumption;  Yes No vehicle load simulated
vehicle cost on each arc annealing

Then the notations used in the VRPFSV formulation are

listed as follows:

n: total number of customers.

i: index of nodes (the depot is represented by 0).

l;;: distance between node i and node j.

v;: stochastic average travel speed on arc(i, j).

Two decision variables are as follows:

f: fixed cost of using a vehicle.
Q: the capacity of a vehicle.
N: set of nodes including the depot, i € N.

A: set of arcs formed by all pairs of nodes, (i, j) €
A, VieN, jeN, i+j.

x;;: binary variable indicating whether arc(i, j) is
traveled. If arc(i, j) is traveled by a vehicle, then x;; =
1; otherwise, x;; = 0.

Q;j: load carried from node i to node j.

2.2. Formulation of the Model of VRPFSV. In this section,
a mixed integer linear programming model is developed to



TABLE 2: Values and notations of parameters.

Notation Description Typical values

w Curb-weight (kilogram) 6350

o) Fuel-to-air mass ratio 1

K Engineer friction factor 02
(kilojoule/rev/liter) ’

N Engineer speed (meter/ second?) 33

\% Engineer displacement (liters) 5
Gravitational constant

G (meter/second?) 981

Cy Coefficient of aerodynamic drag 0.7

P Air density (kilogram/meter”) 1.204

A Frontal surface area (meter?) 3.912

C, Coefficient of rolling resistance 0.01

My Vehicle drive train efficiency 0.4

H Eﬁigency parameter for diesel 0.9
engines

c Fuel and CO, emissions cost per 14
liter (£) ’
Heating value of a typical diesel fuel

K g 44
(kilojoule/gram)

¥ COnvers10n factor (gram/second to 737
liter/second)

ymin Lower speed limit (meter/second) 5

Vi Upper speed limit (meter/second) 25

Source: Demir et al., 2012 [24].

construct the VRPFSV. The VRPESV is an extension of the
classical VRP and assumes that average travel speed v;; on
arc(i, j) is a nonnegative random variable. Furthermore, the
average travel speed v;; on arc(i, j) is assumed to obey normal

j
The fuel consumption model applied in this paper is

based on the comprehensive model formed by Barth and
Boriboonsomsin [33]. It is given by

distribution with mean u;; and variance 01.2]..

)

Ak Y oy 3)d..
Zij (Vij) = ( NV o+ wyeyviy + v iy * ﬁwv) )

where A = §/ky and y = 1/10007,¢7 are constants decided
by different fuel properties, § = 0.5C;pA, and w are vehicle
characteristics related constants. «; is a constant associated
with the road characteristics and acceleration, o;; = 7; +
gsin6;; + gC, cos0;;, where 7;; is acceleration and 6;; is the
road angle inclination. The reference values of all parameters
are given in Table 2. Assuming that acceleration and road
inclination are zeros, then the fuel consumption on arc(i, f)
can be rewritten as

w 2
Z; (Vij) = (V—l + W, + Wy fij + w4vij) dj, )

g

Vij

where w; = AkNV, w, = AwygC,, w; = AygC,, w, = APy,
and the price of the fuel ¢ = 1.4£/L. Equation (2) establishes a
good correlation between fuel consumption and travel speed,
weight, and distance.
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In our research, the service cost includes two compo-
nents: the expected fuel consumption and the fixed vehicle
cost.

Consider arc(i, j); if it is traveled by a vehicle with average
speed of v;;, then it has an expected fuel consumption;
according to (2), the expected fuel consumption is given in

e w, ,
E [F,»j (vij)] = J . lij (v_ +w, + wyQ; + w4vij>

mi
Yij ij

3)
1

‘ V2moy;

2 2
e*(Vij*“ij) /20 dvij'

Consequently, the mathematical formulation of VRPFSV
can be expressed as follows:

min Y Y cE [y (vy)] % + £ ) x; (4)
=1

i=1 j=1

n

s.t. zxi]‘ = 1) Vi € N/ {0} (5)
j=1
Yx;-Yx;=0, VieN (6)
j=1 j=1

n

> Qi- ) Q;=D, VYieN/{0} (7)

j=Lj# jeLj#
Q;<Qxy VY(ij)eA (8)
x; €{0,1}, V(i j)eA )
Q;=0, V(ij)eA (10)

In this optimization model, the two variable sets are x;;
and Q;;. Equation (4) is the objective function which consists
of the expected fuel consumption and the total vehicle cost.
xo; = 1 indicates a departure of a newly used vehicle from the
depot; as any used vehicle will trigger a fixed cost, the sum of
x,; represents the total vehicle cost. Constraint (5) represents
that the vehicle visits each node (except the depot) only once.
Equation (6) represents the conservation of flow constraints.
Equation (7) ensures that the demand of each customer
must be met and it also eliminates subtours. Equation (8)
guarantees that the vehicle load cannot exceed the vehicle
capacity Q. Equation (9) indicates that x;; is a binary variable.
Equation (10) is the nonnegative constraint of vehicle load.

3. Linearization and Solution by CEPLEX

Since the VRP is NP-hard and this VRPESV model includes
stochastic travel speed, it is at least NP-hard. In this section,
we transform the original model into a linear one, and then
small instances can be solved easily by CEPLEX 12.6.2.

This VRPFSV model is nonlinear due to the existence
item x;;Q;; in the objective. In fact, as the Hessian matrix of
the objective is nonpositive, the VRPESV model is even not
convex. Fortunately, we manage to make the linearization and
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obtain the linear model which is equivalent to the original
one.

For any given arc(i, j), consider its expected fuel con-
sumption:

e o,
E [Fij (Vij)] = Xij J lij . +w, + ‘U3Q + a)41/]

ij

vmax
ij w
= Xx;j jmm lij <— +w, + a)4vlj>
V.

’J
max

1 _ 2 Vij
(g4’ /20, dv;j + x;; l,-jw3Q,-j
min

. —mo}' if
(11)

~(vy—w;)’ 20, i
e dvi; + Qjx;; Jmm lijws

’)

In fact, the total fuel consumption can be reduced as
follows:

pmax
4 w 2
E[E;(vy)] = x,-jj ‘ lij<— +w2+w4vj>
AN
{r_lax

1 —(vi—u. )2 20,2 i
¢ i) 12 dv;; +QUJ J Lw, (12)
V n

' V2roy;
1
V2roy;

1

2 2
e*(Vij*”i;) /203 dvij‘

Property 1. In the VRPESV, (11) is equivalent to (12), subject-
ing to constraint (8).

Proof of Property 1. In order to prove this property, we only
need to prove that the product of Q; and x;; is equivalent to
Q- In fact, x;; is a binary variable; if x x;; = 1, then x;;Q;; = Q)5
else if x;; =0, due to constraints (8) and (10), we get Q;=0
Consequently, x;;Q;; = 0 = Q;;. Thus, x;;Q;; is equivalent to
Q; which indicates that (11) is equivalent to (12).

According to (12), objective (4) is converted to the
equivalent linear form:

3 Yk [Fy (v)] 5, +fzxoj

i=1 j=1
n v:‘]?“ )
= Z Zcx,] T e U O
min V. ']
i=0 j=0 Yij ij
(13)
1 oyt /203 (
—_— 7 dvy; + Z ZCQ, liw
> i i@
27Taij i=1 j=1 v
1 o) 205"
— v dv; + X
\/2710,~ fz o
Let
Vi (w
Cl—cljj (—1+w2+a)4v])
5\
(14)
1 —(v;i—u;;)? 20,2
. e \ViimHi i dy..
V2mo;; Y
C - Vij 1 (i V120, d
2 =Clj |  wy———¢ Vij (15)
vinin 2710

As a result, objective (4) can be transformed into
Z?:1 Z;‘l:l CE[Fij(Vij)]xij + f 27:1 x0; = G Z?:o Z;'lzo x
Cy Yy 2 Qi + f X %o, which is a linear objective
function about x;; and Q;; now. Moreover, constraints (5)-
(10) are linear about the decision variables, so we established
a linear mixed integer programming model for VRPFSV.

Then the following intractable problem is how to calculate
C, and C,, as it is unable to get the closed form of the integral
in (14). In the following section, we use numerical integration
to obtain and store the value of C; and C, on every arc in
advance.

Now all the expressions in the model are linear, so we got
the coefficient value in the objective. It is possible to optimally
solve problem VRPESV by the existing solver CPLEX (ver-
sion 12.6.2) for small sized problem. The linearization plays
a significant role in finding optimal solution and reducing
computation time. O

4. ISA Algorithm for Large-Scaled VRPFSV

For large-scaled instances, the existing solver will go expired,
as the computation process will cost a very large amount
of time. We develop an algorithm based on SA algorithm.
This ISA algorithm includes four parts, construction of the
initial solution, generating neighborhood solutions, local
search, and replacement of the current best solution. And
theoretically, the SA algorithm is guaranteed to converge
to the global optimization solution with probability one
[43].
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FIGURE 2: Three exchange rules.

4.1. Construction of Initial Solution. In the string model,
the unique depot is encoded as 0 and the customers are
encoded as a series of positive numbers. The string vector
which represents the initial route is formatted as S =
{0 index --- index 0} and the length of Sisn + 2.

Then make S feasible for VRPFSV; that is, assign n
customers to appropriate number of vehicles. Usually, vehicle
load contributes a lot to the fuel consumption. For example,
if a vehicle carries a heavy load starting from the depot, it
manages to serve more customers. On the contrary, if the
initial load is small, more vehicles will be needed because
of the capacity limit. According to vehicle capacity, string
S is transformed to feasible solution with the following
procedures. First, start from the second character of S, and
then accumulate the demands of nodes successively. If the
cumulative demands exceed the vehicle capacity, start a new
vehicle; that is, insert a 0 into string S before the current
character and then reset the cumulative demands to 0. Repeat
the above steps until the end of S. Take n = 10 as an example,
assuming that S = {0 3417 59 810 6 2 0} is
the initial string. As we do not know how many zeros
are needed to be inserted into S initially, we set the
length of VRPX to the largest likely length 21. Because
the cumulative demands of 3, 4, and 1 are less than the
capacity and the cumulative demands of 3, 4, 1, and 7
exceed the capacity, 0 is inserted between 1 and 7. Continue
checking until the end of S; then we can obtain VRPS =
034107509810062000000 0}
which represents ten customers being visited by four vehicles.

4.2. Generate Neighborhood Solutions. Exchange rule: three
commonly used exchange rules swap, relocation, and 2-
opt (see Figure 2) are used to configure the neighborhood
solutions. After exchanging, we get a neighborhood solution,
and then make it feasible following steps of Section 4.1.
Finally, the neighborhood solutions are obtained.

4.3. Local Search and Update the Current Best Solution. The
objective function value is the criterion to evaluate which
solution is better. If the total cost becomes smaller, the newly
generated solution is accepted. Otherwise, the solution is
accepted with certain probability. As poor solutions maybe
accepted at certain probability, so the best of the output
cannot be guaranteed. Consequently, we use a memory array

VRPS™" in the algorithm to record the best solution. Only

when a better solution appears, will VRPS**" be updated.
After continuous improvement, we can get the best solution
in all searched neighborhoods.

Furthermore, it is not so easy to calculate the vehicle load
on each arc, so once a route is generated, the load will be
calculated in a reverse order. More details are listed in in
Appendix B.

This algorithm adopts adaptive cooling processing, and
the temperature cooling coeflicient T can be set to A/(A +
loop), where A is the accepted solution numbers of the
current temperature and loop is the total loop numbers.
In this way, if the number of accepted solutions is small,
that is, the current solution is close to optimal solution, the
coeflicient may lead to smaller search scope which may cost
less time. On the other hand, if the number of accepted
solutions is big, a relatively big cooling coefficient will help
expand the search scope.

The main steps of this improved simulated annealing
algorithm are as follows.

Step 1. Initialize parameters. Input customers with demand D
and distance matrix L, vehicle capacity Q, fixed single vehicle
cost f, speed distribution parameters of each arc u and o, the
end temperature T, 4, and the number of inner loops loop.

Step 2. Generate initial string S according to the method
introduced in Section 4.1.

Step 3. Generate initial temperature. Randomly change S to
its neighbor for 1000 times; the maximum objective deviation
is selected as the initial temperature.

Step 4. Whether the inner loop number is reached, if it is, go
to Step 8. Otherwise, generate new solutions and transform it
into feasible solution.

Step 5. Calculate the deviation between the current cost and
the former one and accept or reject it according to Metropolis
rule.

Step 6. Update the best so far solution.

Step 7. Whether the improvement is less than 0.01, if it is, go
to Step 9.

Step 8. Whether the end temperature is reached, if so, go to
Step 9. Otherwise, drop the temperature and go to Step 4.
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Step 9. Stop and output the best solution. The pseudocode of
the improved annealing algorithm is listed in Appendix A.

In Step 3, we use self-adaptive method to obtain the
best initial temperature. As too high initial temperature
will increase the computational time and too low initial
temperature will trap in local optimal solution. Here, we
generate the maximum temperature adaptively according to
the problem; that is, randomly change the incumbent solution
for 1000 times. The maximum cost deviation between two
neighboring solution is selected as the initial temperature.

Moreover, the temperature drops adaptively, under cer-
tain temperature; if the number of solutions being accepted
is large, then the temperature drops very quickly. Else, if the
number of accepted solutions is small, the temperature drops
relatively slowly.

In Step 5, let C; and C,,,,, be the objective value of the ith
iteration and the best objective of the accepted routes, and
AC = C; - C,,- VRPS™" and VRPS"®" denote, respectively,
the minimum cost route among the accepted ones and the ith
route. If AC < 0, then replace VRPS™" with VRPS™". Else,
replace VRPS™" with VRPS™" if random(0,1) < (T,
Tend)/(TO - Tend)'

The algorithm terminates on two conditions: the current
temperature is below or equal to the end temperature T, 4, or
the improvement of the best solution is less than 0.01.

ow

Theory 2. In the VRPFSV, the time complexity of the pro-
posed SA algorithm is O(n).

Proof. In the outer temperature loop, the number of tempera-
tures in the cooling procedure islog, (T, /T.,q); in the internal
loop, the number of loops is loop, and each loop has a calcu-
lation of cost function C with time complexity O(#n). Thus,
the total time complexity becomes O(n loop log, (Ty/T.,q))-
As loop, 7, T, and T4 are all given constants, Theory 2 is
proved. O

5. Computational Experiments of
the ISA Algorithm

In this section, the results of computational applications of
ISA algorithm are presented.

First, we introduce the Pollution-Routing Problem
Instance Library (PRPLIB) (http://www.apollo.management
.soton.ac.uk/prplib.htm). This library contains nine different-
scale groups of instances of the Pollution-Routing Problem
(PRP). Each group consists of 20 different instances. These
instances are based on real distances collected from UK
cities. The first number in the file name after UK shows the
number of nodes contained in the instance. The second is the
order number of the instance within the group. The problem
consists of n nodes, and the format of each file includes data
about number of customers, vehicle capacity, city name and
demand, distance matrix, and minimum and maximum
speed level.

As there are no suitable benchmark problems of this
model, we modified the benchmark problems of the PRPLIB
to test our algorithm. Suppose that v;; is the average travel

speed on arc(i, j) and it obeys normal distribution with mean
parameter u;; and variance parameter ;.

In these examples, speed limit of all arcs is 5 m/s~25m/s.
For each arc, the integer mean parameters u;; are generated
randomly from interval [5, 25] and set o;; = 1. At the
same time, the other parameters stay unchanged. The ISA
algorithm was implemented in MATLAB and executed on an
Intel 2.0 GHz processor with 1.59 G of RAM.

5.1. Quality and Efficiency of the ISA Algorithm. Tables 2
and 3 compared results of the optimal solutions found by
CPLEX, SA, and ISA algorithm when # is small. The SA and
ISA algorithm are performed 10 times for each instance. The
average and best objective value of the 10 runs are listed in
the tables, respectively. We label the metrics associated with
each objective as follows: the first column is the instance ID,
and the second and third columns are the optimal objective
value and computation time of solutions solved by the solver
CPLEX. Avg-Obj is the average total cost found by our SA
or ISA algorithm in 10 runs. Best-Obj is the best objective of
the 10 runs. Dev. is the relative deviations between the best
objective obtained in 10 runs and the optimal cost solved by
CPLEX or SA; that is, Dev = ((Obj™4 *** — Obj')/Obj') x
100%, i = CEPLX or SA best. Avg-CPU time is the average
run time (CPU) of the SA or ISA algorithm.

5.11 Parameter Settings. As different parameter settings may
influence the performance of ISA heuristic, we test different
parameter values in advance. Furthermore, the initial temper-
ature and temperature drop factor are generated adaptively;
we only need to determine the appropriate values of loop and
T..q- We change one parameter at a time to observe how that
parameter affects the solution. It can be noticed from Figure 3
that using a larger loop or a smaller T, 4 may improve the
solution quality a little but increase the computation time
significantly.

By trading off the effectiveness and the efficiency of the
algorithm, we found the values of loop = 100 and T, 4 = 0.1
are appropriate parameters combination.

As analyzed above, we set loop = 100, T,,q4 = 0.1, ¢ =
1.4, and f = 1. w;, w,, w;, w, are set to the same value as
mentioned in Section 2.2; that is, w, = 1.0176 x 107, w, =
5.3360 x 107, w; = 8.4032 x 10~°, and w, = 1.4122 x 1077,
In order to compare the results obtained by SA and ISA, we
set the same parameter with the same value both in SA and
in ISA. Thus, the parameters in SA is as follows: T, = 1000,
loop =100, and T4 = 0.1.

In Table 3, the CPLEX is always superior to SA and ISA in
both objective and computation time, and the largest relative
deviation between ISA and CPLEX is 5.88%. Table 4 depicts
in most cases that the ISA manage to obtain the optimal
solution and the computation time turns out to be less than
CPLEX. Bold numbers indicate that, in four instances, the
ISA algorithm finds the optimal solution. In all cases, ISA
consumes much less time than classic SA while obtaining the
same solution.

It is shown in Table 5 that when n = 25, the largest
deviation of the ISA and CPLEX is 1.46%, and the ISA obtains
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FIGURE 3: Sensitive analysis of loop and T, 4.

the near optimal solution in less time than both CPLEX and
ISA. For three instances the ISA managed to get the optimal
solution.

In Table 6, results from the ISA outperform the solver
CPLEX. As can be seen, the biggest deviation between ISA
and CPLEX is 5.25% and the longest running time of ISA is
less than 60 seconds, while solver CPLEX costs more than
8 hours. On the other hand, ISA costs less time and obtain
better solutions than SA. These results highlight the high
quality and time advantage of the proposed SA algorithm for
large-scaled problems.

For large-scaled problems, if we set the time limit of
CPLEX solver to 12 hours, all the computing process termi-
nated without any solution. Thus, Tables 7 and 8 only perform
the ISA and SA results. As can be seen, the longest running
time of ISA is less than 100 seconds, which illustrates that the
proposed algorithm performs well especially for large-scaled
problems.

5.1.2. The Effect of Fixed Cost and Variable Cost. As our inter-
est lies in the robustness of the final approach of the problem,
we consider different fixed cost and variable cost values based
on average over ten runs for each instance.

Take n = 200 as an example. First let ¢ = 1, and variable ¢
values are tested over the ranges f € {0.01,0.1, 10, 100, 1000}.
The total cost and number of vehicles are listed in Table 9.

From Table 9, we notice that the total cost increase as the
fixed cost increases. The number of vehicles increases as the
vehicle cost increases, but the increase is not obvious. It only
changes slightly when the difference between f and c is large
enough. The reason is that our heuristic algorithm always
tends to accept the solution with the minimum number of
vehicles with a given depots visiting sequence.

5.2. Compared Results between Models with and without
Stochastic Speed. In order to observe the effects brought by

x107*
2.8

Fuel consumption (kg/m)

7.5 10 12.5 15 17.5 20 22.5 25
Speed (m/s)

F1GURE 4: Relationship between fuel consumption and travel speed.

the stochastic speeds, we focus on the compared results when
n = 10. In the stochastic model, we set the means of average
speed on all arcs to the given value in the first column of
Table 10. In the fixed speed model, the speed of each arc is
set to the given value, that is, the corresponding mean in the
stochastic model. Table 10 lists the objectives obtained by the
ISA algorithm.

As can be seen from Table 10, over the speed interval
[5, 25], cost of model with fixed speed declines first; when it
reaches 15m/s, the minimum cost is obtained; then the cost
begins to increase until the end of the speed interval.

In fact, fuel consumption takes up a large proportion in
the total cost, so the trend of it (Figure 4) is in line with
the trend of the total cost. Generally, costs obtained by the
stochastic speed model is larger than that with fixed speed
over the speed interval (the bold numbers in Table 10 are
relatively high cost of the stochastic speed model), but when
the speed is close to the end points of the interval, model with
fixed speed will obtain smaller cost. The reason of this is that
the integral interval will be ineffective once speeds exceed the
two interval ends.
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TABLE 7: Results of n = 100.
Solutions found by SA in 10 runs Solutions found by ISA in 10 runs
Instance ID . . Avg-CPU . . Avg-CPU Dev. from SA
Avg-Obj (£) Best-Obj (£) time (s) Avg-Obj (£) Best-Obj (£) time (s)
UK100.01 786.44 774.13 155.56 765.4 718.92 99.39 -7.13%
UK100.02 774.64 744.66 153.76 727.98 709.02 57.02 -4.79%
UK100_03 690.51 685.67 154.38 682.02 647.96 93.33 -5.50%
UK100.04 663.71 659.64 157.92 683.57 642.06 27.75 -2.67%
UK100.05 629.12 617.56 156.52 612.15 571.8 92.49 -7.41%
TABLE 8: Results of n = 200.
Solutions found by SA in 10 runs Solutions found by ISA in 10 runs
Instance ID . . Avg-CPU . . Avg-CPU Dev. from SA
Avg-Obj (£) Best-Obj (£) time (s) Avg-Obj (£) Best-Obj (£) time (s)
UK200.01 1413.97 1387.87 327.66 1388.82 1307.69 40.31 -6.13%
UK200.02 1372.61 1326.84 284.24 1303.79 1249.02 57.18 -6.23%
UK200.03 1387.10 1363.50 371.36 1336.83 1264.7 48.27 -7.81%
UK200.04 1316.76 1244.31 292.16 1295.71 1242.86 36.85 -0.12%
UK200.05 1524.22 1503.30 293.40 1497.39 1381.58 42.39 -8.81%

TABLE 9: Test results of different fixed vehicle cost.

Values of f
1000 100 10 0.1 0.01
N 28 28 29 29 29

Total cost (£) 28975.39 4459.221 1474.35 1154.432 968.6605

TaBLE 10: Compared results of n = 10.

Objective value (£)

Given speed
Stochastic speed

value (m/s) Fixed speed model
model
92.42 201.39
158.4 160.77
141.34 140.16
1 129.78 129.1
13 124.03 123.57
15 124.46 121.7
17 122.74 122.48
19 125.56 125.35
21 130.13 129.95
23 132.95 136.04
25 71.21 143.47

6. Conclusion

A new variant of the VRP with fuel consumption is presented,
where the travel speed is considered to be stochastic. To solve
this problem, an improved simulated annealing algorithm
is proposed and presented in this paper. The proposed ISA
is effective for solving the fuel VRP especially for large-
scale problems. Experimental results showed that when the

value of the expected speed is not close to the end points of
speed limit, total travel cost of the stochastic model is always
larger than that of the fixed speed model. In order to make
reliable logistics routing decisions, managers should take the
stochasticity of speed into consideration.

Several extensions are possible for further research. One
worth mentioning extension is when average travel speed
follows other forms of distribution, and another one would
be the time window version or traffic congestion version of
this problem.

Appendix

A. The Pseudocode of the ISA Algorithm
See Algorithm 1.

B. Calculation of the Cost Function C(VRPS)

See Algorithm 2.
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Main: Improved Simulated Annealing algorithm with memory for VRPFSV

Input:

(1) n customers with demand D and distance matrix L

(2) vehicle capacity Q, single vehicle cost f, speed distribution parameters u and o” of each arc

(3) simulated annealing parameters: T4, loop

Output: VRPS route with lowest fuel and vehicle cost

Begin

(1) Initiating: read data file and generate random route S, based on the above-mentioned string character.
String length: N = n + 2

(2) S = S, //accepted as incumbent solution

(3) Heating: randomly change the incumbent solution S to its neighbor for 1000 times. The maximum cost
deviation between two adjacent solutions is selected as the initial temperature, T, = max(AC)

4 T=T,

(5) While T > T, ; do begin

(6) For k =1 to loop do begin

(7) Changing S to ™" //changing S to $™" by one exchange rule randomly

(8) Convert $™" to VRPS™" //Convert §™" to feasible solution

(9) Calculate total cost C(VRPS™")

(10) AC = C(VRPS™") — C(VRPS) //calculating cost deviation

(11)  Accept or reject VRPS™ according to the probability of Metropolis algorithm

(12)  Update VRPS with VRPS™" //Update VRPS

(13) If VRPS™" < VRPSP®t
(14) Update VRPS™" with VRPS™" //Update VRPS***
(15) end if

(16) End for

(17)  If AC < 0.001

(18) Terminate the ISA heuristic

(19) End if

(20) Count the number of accepted solutions A, T = A/(A + loop) //calculating T
(21) T=Tt

(22) End while

(23) Output VRPS>**

End

ALGORITHM 1

Input:

(1) string vector VRPS and fuel consumption function F about travel speed v.

(2) single vehicle cost: f, vehicle capacity: Q, demand matrix D, speed matrix V, distance matrix L.
Output: total cost of all vehicles, including fixed cost and expected fuel consumption
Begin

(1) Totalcost = 0, ExpectF =0

(2) n=find the last nonzero index of VRPS; //find the real end of the string

(3) For i = n to 1 do begin //start from the last customer of the last vehicle

(4) L = L(VRPS(i), VRPS(i + 1)); //distance of arc(VRPS(i), VRPS(i + 1))

(5) u = V(VRPS(i), VRPS(i + 1)); //the mean of the average speed of this arc

(6) If VRPS(i + 1) == 0 //find a used vehicle

(7) W = 0; //reset the load W to zero

(8) m =m + 1; //update the number of vehicles

9) Else

(10) W =W + D(VRPS(i + 1)); //update the vehicle load
(11)  EndIf

(12) ExpectF = ExpectF + quadl(F(v,W, L, u), pmin maxy. update the expectation of fuel consumption
(13) End For

(14) TotalC = mf + ExpectF;

(15) Return TotalC

End

ALGORITHM 2
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