97 research outputs found

    Artefacts Removal from Optical Coherence Tomography Angiography

    Get PDF
    This paper presents a new approach for artefacts removal from optical coherence tomography angiography (OCTA). The artefacts mainly arise as a result of distortion due to eye movements during OCT scanning process. These distortions manifest themselves as visible motion artefacts when doctors review the enface image of OCTA data. To remove these artefacts, firstly we perform motion registration for the captured OCT volume data and subsequently perform motion correction to obtain the registered OCT data. Next, we compute the OCTA from the registered OCT data using an enhanced correlation mapping technique. Thereafter, we compute the enface image from the OCTA data. In the next step, we attempt to locate regions where there is misalignment in the OCT frames of the various B-scans. Finally, we attempt to restore the regions where correct data is postulated to be absent. Our experimental results demonstrate the effectiveness of our proposed approach

    Motion Correction in Optical Coherence Tomography for Multi-modality Retinal Image Registration

    Get PDF
    Optical coherence tomography (OCT) is a recently developed non-invasive imaging modality, which is often used in ophthalmology. Because of the sequential scanning in form of A-scans, OCT suffers from the inevitable eye movement. This often leads to mis-alignment especially among consecutive B-scans, which affects the analysis and processing of the data such as the registration of the OCT en face image to color fundus image. In this paper, we propose a novel method to correct the mis-alignment among consecutive B-scans to improve the accuracy in multi-modality retinal image registration. In the method, we propose to compute decorrelation from overlapping B-scans and to detect the eye movement. Then, the B-scans with eye movement will be re-aligned to its precedent scans while the rest of B-scans without eye movement are untouched. Our experiments results show that the proposed method improves the accuracy and success rate in the registration to color fundus images

    Effect of Tryptophan Hydroxylase-2 rs7305115 SNP on suicide attempts risk in major depression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Suicide and major depressive disorders (MDD) are strongly associated, and genetic factors are responsible for at least part of the variability in suicide risk. We investigated whether variation at the tryptophan hydroxylase-2 (TPH2) gene rs7305115 SNP may predispose to suicide attempts in MDD.</p> <p>Methods</p> <p>We genotyped TPH2 gene rs7305115 SNP in 215 MDD patients with suicide and matched MDD patients without suicide. Differences in behavioral and personality traits according to genotypic variation were investigated by logistic regression analysis.</p> <p>Results</p> <p>There were no significant differences between MDD patients with suicide and controls in genotypic (AG and GG) frequencies for rs7305115 SNP, but the distribution of AA genotype differed significantly (14.4% vs. 29.3%, <it>p </it>< 0.001). The G-allele frequency was significantly higher in cases than control group (58.1% vs.45.6%, <it>p </it>< 0.001), but the A-allele carrier indicated a decreased trend in MDD with suicide behaviors than control group (41.9% vs.54.4%, <it>p </it>< 0.001). The multivariate logistic regression analysis indicated that TPH2 rs7305115 AA (OR 0.33, 95% CI 0.22-0.99), family history of suicide (OR 2.98, 95% CI 1.17-5.04), negative life events half year ago (OR 6.64, 95% CI 2.48-11.04) and hopelessness (OR 7.68, 95% CI 5.79-13.74) were significantly associated with the suicide behaviors in MDD patients.</p> <p>Conclusions</p> <p>The study suggested that hopelessness, negative life events and family history of suicide were risk factors of attempted suicide in MDD while the TPH2 rs7305115A remained a significant protective predictor of suicide attempts.</p

    Multiplexed profiling of extracellular vesicles for biomarker development

    Get PDF
    Extracellular vesicles (EVs) are cell-derived membranous particles that play a crucial role in molecular trafficking, intercellular transport and the egress of unwanted proteins. They have been implicated in many diseases including cancer and neurodegeneration. EVs are detected in all bodily fluids, and their protein and nucleic acid content offers a means of assessing the status of the cells from which they originated. As such, they provide opportunities in biomarker discovery for diagnosis, prognosis or the stratification of diseases as well as an objective monitoring of therapies. The simultaneous assaying of multiple EV-derived markers will be required for an impactful practical application, and multiplexing platforms have evolved with the potential to achieve this. Herein, we provide a comprehensive overview of the currently available multiplexing platforms for EV analysis, with a primary focus on miniaturized and integrated devices that offer potential step changes in analytical power, throughput and consistency

    ACHIKO-M Database for high myopia analysis and its evaluation

    Get PDF
    Myopia is the leading public health concern with high prevalence in developed countries. In this paper, we present the ACHIKO-M fundus image database with both myopic and emmetropic cases for high myopia study. The database contains 705 myopic subjects and 151 normal subjects with both left eye and right eye images for each subject. In addition, various clinical data is also available, allowing correlation study of different risk factors. We evaluated two state-of-the-art automated myopia detection algorithms on this database to show how it can be used. Both methods achieve more than 90% accuracy for myopia diagnosis. We will also discuss how ACHIKO-M can be a good database for both scientific and clinical research of myopia

    Optimization of finite-sized modular coils for advanced stellarators

    Get PDF
    To date, almost all coil-design codes, e.g. NESCOIL, COILOPT, FOCUS codes, etc, have been primarily attributed to the optimization of filament coils for stellarators. However, evolving to a practical/finite-sized coil from a filament coil, the finite-size effect of coils significantly constrains the fabrication tolerances of a coil system. This paper presents a novel approach that emphasizes the optimization of practical modular coils to reduce sensitivity to fabrication tolerances and to achieve the expected magnetic configurations precisely. A new evaluation parameter, surface twist, is defined in this paper and applied to the optimization sequence in addition to the practical coil line torsion and curvature. The approach has been applied to the framework of the filament coil scheme in the Chinese first quasi-axisymmetric stellarator. This practical coil system without surface twists has been accomplished. Compared to the original finite-sized coil design, the new result is a more considerable simplification of coil shapes, such that in a certain direction view each finite-sized coil becomes a planar-like one. Moreover, this method can also be implemented for the estimation of stochastic deviations of practical coils during the fabrication and assembly of the coil system

    Configuration characteristics of the Chinese First Quasi-axisymmetric Stellarator

    Get PDF
    The Chinese First Quasi-axisymmetric Stellarator (CFQS) will be the first operational quasi-axially symmetric stellarator in the world. The physical and engineering complexities led to the cancellation of two famous quasi-axisymmetric stellarators, CHS-qa and NCSX. Therefore, the major mission of the CFQS is to experimentally achieve the canonical quasi-axisymmetric configuration. The CFQS has been designed to possess a number of advanced features in fixed and free-boundary equilibria. It is a compact stellarator with an aspect ratio R/a ∼4.0. The neoclassical diffusion coefficient is similar to that of tokamaks in the collisionless regime. The MHD equilibrium of the CFQS configuration is stable up to volume-averaged normalized pressure β ∼1.1%. A region of the second ballooning stability exists in this facility with a large region of plasma, becoming second stable for β ∼2.7% in free-boundary equilibria. The gap between the first and second stability boundaries is very narrow, which is greatly beneficial for the CFQS operation in the second stable regime with high β plasma. A modular coil system with 16 coils is designed which robustly reproduces the standard quasi-axisymmetric magnetic field

    Global change effects on plant communities are magnified by time and the number of global change factors imposed

    Get PDF
    Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity–ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously
    corecore