231 research outputs found

    The State-of-the-art of Coordinated Ramp Control with Mixed Traffic Conditions

    Get PDF
    Ramp metering, a traditional traffic control strategy for conventional vehicles, has been widely deployed around the world since the 1960s. On the other hand, the last decade has witnessed significant advances in connected and automated vehicle (CAV) technology and its great potential for improving safety, mobility and environmental sustainability. Therefore, a large amount of research has been conducted on cooperative ramp merging for CAVs only. However, it is expected that the phase of mixed traffic, namely the coexistence of both human-driven vehicles and CAVs, would last for a long time. Since there is little research on the system-wide ramp control with mixed traffic conditions, the paper aims to close this gap by proposing an innovative system architecture and reviewing the state-of-the-art studies on the key components of the proposed system. These components include traffic state estimation, ramp metering, driving behavior modeling, and coordination of CAVs. All reviewed literature plot an extensive landscape for the proposed system-wide coordinated ramp control with mixed traffic conditions.Comment: 8 pages, 1 figure, IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE - ITSC 201

    An Advanced Simulation Framework of an Integrated Vehicle-Powertrain Eco-Operation System for Electric Buses

    Get PDF
    vities of transit buses traveling along arterial roads and city streets consist of frequent stops and idling events at many predictable occasions, e.g., loading/unloading passengers at bus stops, approaching traffic signals or stop signs, and going through recurrent traffic congestion, etc. Besides designing transit buses with electric powertrain systems that can save a noticeable amount of energy thanks to regenerative breaking, this urban traffic environment also unfolds a number of opportunities to further improve their energy efficiency via vehicle connectivity and autonomy. Therefore, this paper proposes a complete and novel simulation framework of integrated vehicle/powertrain eco-operation system for electric buses (Eco-bus) by co-optimizing the vehicle dynamics and powertrain (VD&PT) controls. A comprehensive evaluation of the proposed system on mobility benefits and energy savings has been conducted over various traffic conditions. Simulation results are presented to showcase the superiority of the proposed simulation framework of the Eco-bus compared to the conventional bus, particularly in terms of mobility and energy efficiency aspects
    • …
    corecore