41 research outputs found

    Simulation of Non-resonant Internal Kink Mode with Toroidal Rotation in NSTX

    Full text link
    Plasmas in spherical and conventional tokamaks, with weakly reversed shear q pro le and minimum q above but close to unity, are susceptible to an non-resonant (m, n ) = (1, 1) internal kink mode. This mode can saturate and persist and can induce a (2; 1) seed island for Neoclassical Tearing Mode (NTMs)1 . The mode can also lead to large energetic particle transport and signi cant broadening of beam-driven current. Motivated by these important e ects, we have carried out extensive nonlinear simulations of the mode with nite toroidal rotation using parameters and pro les of an NTSX plasma with a weakly reversed shear pro le. The numerical results show that, at the experimental level, plasma rotation has little e ect on either equilibrium or linear stability. However, rotation can signi cantly inuence the nonlinear dynamics of the (1, 1) mode and the the induced (2, 1) magnetic island. The simulation results show that a rotating helical equilibrium is formed and maintained in the nonlinear phase at nite plasma rotation. In contrast, for non-rotating cases, the nonlinear evolution exhibits dynamic oscillations between a quasi-2D state and a helical state. Furthermore, the e ects of rotation are found to greatly suppress the (2, 1) magnetic island even at a low level

    Integrated Analysis of Long Noncoding RNA and Coding RNA Expression in Esophageal Squamous Cell Carcinoma

    Get PDF
    Tumorigenesis is a complex dynamic biological process that includes multiple steps of genetic and epigenetic alterations, aberrant expression of noncoding RNA, and changes in the expression profiles of coding genes. We call the collection of those perturbations in genome space the “cancer initiatome.” Long noncoding RNAs (lncRNAs) are pervasively transcribed in the genome and they have key regulatory functions in chromatin remodeling and gene expression. Spatiotemporal variation in the expression of lncRNAs has been observed in development and disease states, including cancer. A few dysregulated lncRNAs have been studied in cancers, but the role of lncRNAs in the cancer initiatome remains largely unknown, especially in esophageal squamous cell carcinoma (ESCC). We conducted a genome-wide screen of the expression of lncRNAs and coding RNAs from ESCC and matched adjacent nonneoplastic normal tissues. We identified differentially expressed lncRNAs and coding RNAs in ESCC relative to their matched normal tissue counterparts and validated the result using polymerase chain reaction analysis. Furthermore, we identified differentially expressed lncRNAs that are co-located and co-expressed with differentially expressed coding RNAs in ESCC and the results point to a potential interaction between lncRNAs and neighboring coding genes that affect ether lipid metabolism, and the interaction may contribute to the development of ESCC. These data provide compelling evidence for a potential novel genomic biomarker of esophageal squamous cell cancer

    Toroidal Alfven Eigenmode induced ripple trapping

    Get PDF
    Toroidal Alfven Eigenmodes are shown to be capable of inducing ripple trapping of high energy particles in tokamaks, causing intense localized particle loss. The effect has been observed in TFTR

    Stable backward reachability correction for PLL verification with consideration of environmental noise induced jitter

    No full text
    It is unknown to perform efficient PLL system-level verification with consideration of jitter induced by substrate or power-supply noise. With the consideration of nonlinear phase noise macromodel, this paper introduces a forward reachability analysis with stable backward correction for PLL system-level verification with jitter. By refining initial state of PLL through backward correction, one can perform an efficient PLL verification to automatically adjust the locking range with consideration of environmental noise induced jitter. Moreover, to overcome the unstable nature during backward correction, a stability calibration is introduced in this paper to limit error. To validate our method, the proposed approach is applied to verify a number of PLL designs including single- LC or coupled-LC oscillators described by system-level behavioral model with jitter. Experimental results show that our forward reachability analysis with backward correction can succeed in reaching the adjusted locking range by correcting initial states in presence of environmental noise induced jitter.Accepted versio

    Voltage-controlled radial wrinkles of a trumpet-like dielectric elastomer structure

    No full text
    Wrinkle is usually considered as one failure mode of membrane structure. However, it can also be harnessed in developing smart devices such as dry adhesion tape, diffraction grating, smart window, etc. In this paper, we present a method to generate voltage-controlled radial wrinkles, which are fast response and reversible, in a stretched circular dielectric elastomer (DE) membrane with boundary fixed. In the experiment, we bond a circular plate on the center of the circular membrane and then pull the DE membrane perpendicular to itself via the plate. The stretched DE membrane is a trumpet-like structure. When the stretched DE membrane is subjected to a certain voltage, wrinkles nucleate from the center of the DE membrane and propagate to the boundary as the voltage increases. We adopt a theoretical framework to analyze the nucleation of the wrinkles. A simple wavelength expression is achieved, which is only related to the geometry and the stretch of the DE membrane. Results show that the theory agrees well with the experiment. This work may help the future design of DE actuators in avoiding mechanical instability and provide a new method to generate controllable radial DE wrinkles
    corecore