48 research outputs found

    Characterizing corn-straw-degrading actinomycetes and evaluating application efficiency in straw-returning experiments

    Get PDF
    Corn straw is an abundant lignocellulose resource and by-product of agricultural production. With the continuous increase in agricultural development, the output of corn straw is also increasing significantly. However, the inappropriate disposal of straw results in wasting of resources, and also causes a serious ecological crisis. Screening microorganisms with the capacity to degrade straw and understanding their mechanism of action is an efficient approach to solve such problems. For this purpose, our research group isolated three actinomycete strains with efficient lignocellulose degradation ability from soil in the cold region of China: Streptomyces sp. G1T, Streptomyces sp. G2T and Streptomyces sp. G3T. Their microbial properties and taxonomic status were assessed to improve our understanding of these strains. The three strains showed typical characteristics of the genus Streptomyces, and likely represent three different species. Genome functional annotation indicated that most of their genes were related to functions like carbohydrate transport and metabolism. In addition, a similar phenomenon also appeared in the COG and CAZyme analyses, with a large number of genes encoding carbohydrate-related hydrolases, such as cellulase, glycosidase and endoglucanase, which could effectively destroy the structure of lignocellulose in corn straw. This unambiguously demonstrated the potential of the three microorganisms to hydrolyze macromolecular polysaccharides at the molecular level. In addition, in the straw-returning test, the decomposing consortium composed of the three Streptomyces isolates (G123) effectively destroyed the recalcitrant bonds between the various components of straw, and significantly reduced the content of active components in corn straw. Furthermore, microbial diversity analysis indicated that the relative abundance of Proteobacteria, reportedly associated with soil antibiotic resistance and antibiotic degradation, was significantly improved with straw returning at both tested time points. The microbial diversity of each treatment was also dramatically changed by supplementing with G123. Taken together, G123 has important biological potential and should be further studied, which will provide new insights and strategies for appropriate treatment of corn straw

    A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome

    Get PDF
    As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits

    Characterization of transcriptome dynamics during watermelon fruit development: sequencing, assembly, annotation and gene expression profiles

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cultivated watermelon [<it>Citrullus lanatus </it>(Thunb.) Matsum. & Nakai var. <it>lanatus</it>] is an important agriculture crop world-wide. The fruit of watermelon undergoes distinct stages of development with dramatic changes in its size, color, sweetness, texture and aroma. In order to better understand the genetic and molecular basis of these changes and significantly expand the watermelon transcript catalog, we have selected four critical stages of watermelon fruit development and used Roche/454 next-generation sequencing technology to generate a large expressed sequence tag (EST) dataset and a comprehensive transcriptome profile for watermelon fruit flesh tissues.</p> <p>Results</p> <p>We performed half Roche/454 GS-FLX run for each of the four watermelon fruit developmental stages (immature white, white-pink flesh, red flesh and over-ripe) and obtained 577,023 high quality ESTs with an average length of 302.8 bp. <it>De novo </it>assembly of these ESTs together with 11,786 watermelon ESTs collected from GenBank produced 75,068 unigenes with a total length of approximately 31.8 Mb. Overall 54.9% of the unigenes showed significant similarities to known sequences in GenBank non-redundant (nr) protein database and around two-thirds of them matched proteins of cucumber, the most closely-related species with a sequenced genome. The unigenes were further assigned with gene ontology (GO) terms and mapped to biochemical pathways. More than 5,000 SSRs were identified from the EST collection. Furthermore we carried out digital gene expression analysis of these ESTs and identified 3,023 genes that were differentially expressed during watermelon fruit development and ripening, which provided novel insights into watermelon fruit biology and a comprehensive resource of candidate genes for future functional analysis. We then generated profiles of several interesting metabolites that are important to fruit quality including pigmentation and sweetness. Integrative analysis of metabolite and digital gene expression profiles helped elucidating molecular mechanisms governing these important quality-related traits during watermelon fruit development.</p> <p>Conclusion</p> <p>We have generated a large collection of watermelon ESTs, which represents a significant expansion of the current transcript catalog of watermelon and a valuable resource for future studies on the genomics of watermelon and other closely-related species. Digital expression analysis of this EST collection allowed us to identify a large set of genes that were differentially expressed during watermelon fruit development and ripening, which provide a rich source of candidates for future functional analysis and represent a valuable increase in our knowledge base of watermelon fruit biology.</p

    Accumulation of water-soluble gas by degasification: One of important mechanisms of large gas accumulations in the Xujiahe Formation, Sichuan Basin

    No full text
    Abstract: In recent years, a lot of lithologic/structural-lithologic gas reservoirs were found in the Xujiahe Formation, Upper Triassic, Sichuan Basin, and most of the reservoirs contain water. We have carried out the study of the properties and characteristics of the fluid, and found the changes of natural gas components and carbon isotope which confirm the accumulation of water-soluble gas with degasification, namely, such accumulation far away from gas source features high methane, high drying factor, high ratio of isoalkane to normal paraffin hydrocarbons, and heavy carbon isotope in methane and ethane. Accumulations of water-soluble gas with degasification with reduction of pressure & temperature for strata uplift and with reduction of pressure & temperature for lateral migration of soluble gas along layer are the main forming mechanisms. The strong ground uplift, fluid decompression and reduction of temperature, local concentration of water salinity, and a wealth of water-soluble gas resources are the favorable conditions for the accumulation. We conclude that the accumulation of water-soluble gas with degasification is not only one of the important mechanisms of development of large lithologic gas reservoirs and large gas accumulations in Central Sichuan, but also a key reason for poor source rocks in the Xu1 Member but large gas accumulation in the Xu2 Member in the Hechuan-Anyue area. 摘要: 近年来四川盆地上三叠统须家河组发现了大量岩性气藏及构造-岩性复合气藏 且普遍含水。通过开展流体性质与特征研究 发现了水溶气脱溶成藏的天然气组分变化依据与碳同位素特征变化依据远离气源-心区的水溶气脱溶气藏甲烷含量高、干燥系数较大、异构烷烃与正构烷烃比值大、甲烷与乙烷碳同位素较重。水溶气脱溶成藏主要存在地层抬升减压降温脱溶成藏与水溶气顺层侧向运移减压脱溶成藏两种模式 川-地区具有水溶气脱溶成藏所需的有利条件 即丰富的水溶气资源、地层强烈抬升、流体减压降温及地层水矿化度局部浓缩等。水溶气的脱溶成藏是大川-地区大面积岩性气藏发育及天然气规模聚集的重要成藏机理之一 也是合川—安岳地区须一段烃源岩发育很差而须二段却能形成大规模天然气聚集的重要原因。图6参36 关键词四川盆地 须家河组 水溶气 脱溶作用 成藏机理-图分类号TE122.1 文献标识码A Key words: Sichuan Basin, Xujiahe Formation, water-soluble gas, degasification, accumulation mechanis

    In-Composition Graded Quantum Barriers for Polarization Manipulation in InGaN-Based Yellow Light-Emitting Diodes

    No full text
    Highly efficient indium gallium nitride (InGaN)-based yellow light-emitting diodes (LEDs) with low efficiency droop have always been pursued for next-generation displays and lighting products. In this work, we report an InGaN quantum barrier (QB) with linear-increase In-composition along [0001] direction for InGaN-based yellow LEDs. With the In-composition in QBs systematically engineered, three QB structures including linear-increase QB (LIQB), linear-decrease QB (LDQB) and commonly used flat QB (FQB) were investigated by simulation. The results show that the LIQB not only yields enhanced electron confinement, but also contributes to suppressed polarization field. Consequently, the yellow LED incorporated with LIQBs demonstrates improved radiative recombination rates and the efficiency droop is alleviated. Under a current density of 100 A/cm2, the efficiency droop ratios of LEDs with FQBs, LDQBs and LIQBs are 58.7%, 62.2% and 51.5%, respectively. When current density varies from 1 A/cm2 to 60 A/cm2, the blueshift values of peak emission wavelength for LEDs with FQBs, LDQBs and LIQBs are 14.4 nm, 16.5 nm and 13.0 nm, respectively. This work is believed to provide a feasible solution for high-performance InGaN-based LEDs in long-wavelength spectral region

    Enhanced Optoelectronic Performance of Yellow Light-Emitting Diodes Grown on InGaN/GaN Pre-Well Structure

    No full text
    InGaN-based long-wavelength light-emitting diodes (LEDs) are indispensable components for the next-generation solid-state lighting industry. In this work, we introduce additional InGaN/GaN pre-wells in LED structure and investigate the influence on optoelectronic properties of yellow (~575 nm) LEDs. It is found that yellow LED with pre-wells exhibits a smaller blue shift, and a 2.2-fold increase in light output power and stronger photoluminescence (PL) intensity compared to yellow LED without pre-wells. The underlying mechanism is revealed by using Raman spectra, temperature-dependent PL, and X-ray diffraction. Benefiting from the pre-well structure, in-plane compressive stress is reduced, which effectively suppresses the quantum confined stark effect. Furthermore, the increased quantum efficiency is also related to deeper localized states with reduced non-radiative centers forming in multiple quantum wells grown on pre-wells. Our work demonstrates a comprehensive understanding of a pre-well structure for obtaining efficient LEDs towards long wavelengths

    Size-dependent efficiency and efficiency droop of blue InGaN micro-light emitting diodes

    No full text
    The mechanisms of size-dependent efficiency and efficiency droop of blue InGaN micro-pixel light emitting diodes (LEDs) have been investigated experimentally and by simulation. Electrical characterisation confirms the improvement of current spreading for smaller LEDs, which enables the achievement of the higher efficiency at high injection current densities. Owing to the higher ratio of sidewall perimeter to mesa area of smaller LEDs, a lower efficiency was observed at a low injection current density, resulting from defect-related Shockley-Read-Hall non-radiative recombination. We demonstrate that such sidewall etch defects can be partially recovered by increased thermal annealing time, consequently improving the efficiency at low current densitie

    Research status on thermal simulation experiment and several issues of concern

    No full text
    We study the research status of thermal simulation experiment and put forward three issues worthy of attention and five important development directions. Classification according to thermal simulation system is the most widely used classification scheme. Different thermal simulation experimental systems have their own characteristics, and according to different experimental purpose, a suitable thermal simulation experiment system can be selected according to different experimental purposes. The closed experimental system is more suitable for the thermal simulation experiment of humic source rocks. The online analysis of open system has unique advantages in the study of volatile components. The semi-open system is the most closest to the thermal simulation system of the thermal evolution of the source rocks in the actual geological condition. Three key issues are presented concerning the thermal simulation experiment are presented. The first is the influence of water on the thermal simulation experiment. The second is whether convincing isotope reversal can be presented expect Fischer–Tropsch synthesis. The third is that, in the study of the thermal simulation experiment, the model of hydrocarbon generation must be built in combination with the actual geological background. Five key development directions concerning the thermal simulation experiment are proposed. The first is thermal simulation experimental study on a relatively low temperature and a long time with water participation. The second is experimental research on thermal simulation of unconventional petroleum. The third is a study on the development of pore microcracks in source rocks and the correlation of the interaction of fluid discharge in thermal simulation experiments. The fourth is an experimental study on thermal simulation of carbonate source rock. The fifth is an experimental study of thermal simulation related to abnormal pressure. Keywords: Thermal simulation experiment, Research status, Classification scheme, Development directio

    Modulation of Sex Expression in Four Forms of Watermelon by Gibberellin, Ethephone and Silver Nitrate

    No full text
    There has been no systematic research on the effect of plant growth regulators and silver nitrate treatments on the control of sex expression in watermelon. In this study, we tested sex expression responses of four watermelon forms (monoecism, gynoecism, andromonoecism, and hermaphrodite) to gibberellin, ethephon and silver nitrate treatments. Results have shown that, in monoecious plants, gibberellins (GA3) and ethephon treatments reduced the percentage of female flowers and delayed the occurrence of the first female flower, while silver nitrate induced the formation of bisexual flowers. In gynoecious plants, both ethephon and silver nitrate treatments transformed some female flowers into bisexual flowers, and treatment with ethephon resulted in a mass of abnormal flowers, while no obvious effect of treatment with GA3 was observed. In andromonoecious plants, ethephon and GA3 treatments delayed the occurrence of the first bisexual flower, and GA3 reduced the percentage of bisexual flowers, while no distinct effect for silver nitrate treatment was observed. In hermaphroditic plants, ethephon treatment induced the appearance of numerous abnormal flowers, while no obvious effects for GA3 and silver nitrate treatments were observed. We analyzed the transcription levels of all the expressed aminocyclopropane-1-carboxylic acid synthase (ACS) homologues in two gynoecious mutants and their wild types. We also tested the gene expression of CitACS4 which had been recognized as the andromonoecious gene in all treatments. All these results suggested that the best masculinizing treatment for breeding of the gynoecious line is silver nitrate, which repressed the expression of CitACS4 and induced many bisexual flowers for use in self-fertilization subsequently
    corecore