15 research outputs found

    Robot-assisted percutaneous screw fixation in the treatment of navicular fracture

    Get PDF
    BackgroundLong recovery time, large scar, postoperative swelling and pain are possible side effects of open reduction internal fixation (ORIF) for tarsal navicular fractures. Early exercise instruction is made possible by the use of an intraoperative robot-assisted percutaneous invasive closed reduction internal fixation. The goal of the trial was to determine whether percutaneous screw internal fixation with robot assistance might be used to treat navicular fractures.Methods27 patients with navicular fractures had surgical treatment between June 2019 and December 2021. Of those, 20 instances were treated with ORIF, while 7 cases had robot-assisted percutaneous screw internal fixation. At the final follow-up, the American Orthopaedic Foot & Ankle Society (AOFAS) hindfoot score and the visual analogue scale (VAS) score were compared to determine outcomes and function.ResultsFollow-up was obtained in all 27 patients after surgery, with a mean follow-up time of 21.81 months, ranging from 15 to 29 months . In the 7 instances of robot-assisted group, percutaneous guide wire insertion and screw placement only needed one attempt and the depth and position of the implant were both satisfactory. In the ORIF group, there were two patients who sustained cutaneous nerve injuries. The AOFAS score and the VAS score of the group receiving robot-assisted navigation percutaneous screw fixation were 92.25 ± 2.22 and 0.75 ± 0.25 respectively at the last follow-up, while 82.25 ± 7.15 and 0.50 ± 0.29 were the respective values for the ORIF group.ConclusionIntraoperative robot-assisted percutaneous closed reduction internal fixation for tarsal navicular fractures can accomplish exact localization of fracture site, reduce soft tissue damage and operative time. According to current view, this method offers fewer complications, a faster recovery after surgery, and more patient satisfaction

    Lateral approach for insertional Achilles tendinitis with Haglund deformity

    Get PDF
    ObjectiveThe study aims to investigate the functional outcome of the lateral approach for insertional Achilles tendinitis (IAT) with Haglund deformity.MethodsFrom January 2016 to September 2019, 14 cases of IAT with Haglund deformity that resisted conservative treatment received surgery in our department. A lateral approach was used to debride the bony and soft tissue and reattach the insertion of the Achilles tendon. The Visual Analog Scale (VAS), American Orthopedic Foot and Ankle Score (AOFAS), and Victorian Institute of Sport Tendon Study Group-Achilles Tendinopathy score (VISA-A) were used to evaluate clinical outcomes.ResultThe mean patient age was 39.57 years at the time of surgery. The mean follow-up was 14.74 months. The mean VAS score significantly decreased from 4.86 ± 0.86 preoperatively to 1.21 ± 1.58 postoperatively (P < 0.001). The mean AOFAS score significantly improved from 66.64 ± 6.23 preoperatively to 90.21 ± 11.50 postoperatively (P < 0.001). The mean preoperative and the last follow-up VISA-A were 66 (range 56.75–69.25) and 86 (range 75.75–97.00) points, respectively (P < 0.05).ConclusionThe lateral approach was effective and safe for IAT with Haglund deformity. Moreover, the mid-term functional outcome was promising.Level of Clinical EvidenceI

    Identification of cry1I-Type Genes from Bacillus thuringiensis Strains and Characterization of a Novel cry1I-Type Gene

    No full text
    A PCR-restriction fragment length polymorphism method for identification of cry1I-type genes from Bacillus thuringiensis was established by designing a pair of universal primers based on the conserved regions of the genes to amplify 1,548-bp cry1I-type gene fragments. Amplification products were digested with the Bsp119I and BanI enzymes, and four kinds of known cry1I-type genes were successfully identified. The results showed that cry1I-type genes appeared in 95 of 115 B. thuringiensis isolates and 7 of 13 standard strains. A novel cry1I-type gene was found in one standard strain and six isolates. The novel cry1I gene was cloned from B. thuringiensis isolate Btc007 and subcloned into vector pET-21b. Then it was overexpressed in Escherichia coli BL21(DE3). The expressed product was shown to be toxic to the diamondback moth (Plutella xylostella), Asian corn borer (Ostrinia furnacalis), and soybean pod borer (Leguminivora glycinivorella). However, it was not toxic to the cotton bollworm (Helicoverpa armigera), beet armyworm (Spodoptera exigua), or elm leaf beetle (Pyrrhalta aenescens) in bioassays. Subsequently, the Cry protein encoded by this novel cry gene was designated Cry1Ie1 by the B. thuringiensis δ-endotoxin nomenclature committee

    Risk factors for chronic ankle instability after first episode of lateral ankle sprain: A retrospective analysis of 362 cases

    No full text
    Background: Chronic ankle instability (CAI) is a common sequela following an acute lateral ankle sprain (LAS). To treat an acute LAS more effectively and efficiently, it is important to identify patients at substantial risk for developing CAI. This study identifies magnetic resonance imaging (MRI) manifestations for predicting CAI development after a first episode of LAS and explores appropriate clinical indications for ordering MRI scans for these patients. Methods: All patients with a first-episode LAS who received plain radiograph and MRI scanning within the first 2 weeks after LAS from December 1, 2017 to December 1, 2019 were identified. Data were collected using the Cumberland Ankle Instability Tool at final follow-up. Demographic and other related clinical variables, including age, sex, body mass index, and treatment were also recorded. Univariable and multivariable analyses were performed successively to identify risk factors for CAI after first-episode LAS. Results: A total 131 out of 362 patients with a mean follow-up of 3.0 ± 0.6 years (mean ± SD; 2.0–4.1 years) developed CAI after first-episode LAS. According to multivariable regression, development of CAI after first-episode LAS was associated with 5 prognostic factors: age (odds ratio (OR) = 0.96, 95% confidence interval (95%CI): 0.93–1.00, p = 0.032); body mass index (OR = 1.09, 95%CI: 1.02–1.17, p = 0.009); posterior talofibular ligament injury (OR = 2.17, 95%CI: 1.05–4.48, p = 0.035); large bone marrow lesion of the talus (OR = 2.69, 95%CI: 1.30–5.58, p = 0.008), and Grade 2 effusion of the tibiotalar joint (OR = 2.61, 95%CI: 1.39–4.89, p = 0.003). When patients had at least 1 positive clinical finding in the 10-m walk test, anterior drawer test, or inversion tilt test, they had a 90.2% sensitivity and 77.4% specificity in terms of detecting at least 1 prognostic factor by MRI. Conclusion: MRI scanning is valuable in predicting CAI after first-episode LAS for those patients with at least 1 positive clinical finding in the 10-m walk test, anterior drawer test, and inversion tilt test. Further prospective and large-scale studies are necessary for validation
    corecore