17 research outputs found

    Genome Sequencing and Comparative Transcriptomics of the Model Entomopathogenic Fungi Metarhizium anisopliae and M. acridum

    Get PDF
    Metarhizium spp. are being used as environmentally friendly alternatives to chemical insecticides, as model systems for studying insect-fungus interactions, and as a resource of genes for biotechnology. We present a comparative analysis of the genome sequences of the broad-spectrum insect pathogen Metarhizium anisopliae and the acridid-specific M. acridum. Whole-genome analyses indicate that the genome structures of these two species are highly syntenic and suggest that the genus Metarhizium evolved from plant endophytes or pathogens. Both M. anisopliae and M. acridum have a strikingly larger proportion of genes encoding secreted proteins than other fungi, while ∼30% of these have no functionally characterized homologs, suggesting hitherto unsuspected interactions between fungal pathogens and insects. The analysis of transposase genes provided evidence of repeat-induced point mutations occurring in M. acridum but not in M. anisopliae. With the help of pathogen-host interaction gene database, ∼16% of Metarhizium genes were identified that are similar to experimentally verified genes involved in pathogenicity in other fungi, particularly plant pathogens. However, relative to M. acridum, M. anisopliae has evolved with many expanded gene families of proteases, chitinases, cytochrome P450s, polyketide synthases, and nonribosomal peptide synthetases for cuticle-degradation, detoxification, and toxin biosynthesis that may facilitate its ability to adapt to heterogenous environments. Transcriptional analysis of both fungi during early infection processes provided further insights into the genes and pathways involved in infectivity and specificity. Of particular note, M. acridum transcribed distinct G-protein coupled receptors on cuticles from locusts (the natural hosts) and cockroaches, whereas M. anisopliae transcribed the same receptor on both hosts. This study will facilitate the identification of virulence genes and the development of improved biocontrol strains with customized properties

    Automatic classification of insulator by combining k-nearest neighbor algorithm with multi-type feature for the Internet of Things

    No full text
    Abstract New algorithms and architectures in the context of 5G shall be explored to ensure the efficiency, robustness, and consistency in variable application environments which concern different issues, such as the smart grid, water supply, gas monitoring, etc. In power line monitoring, we can get lots of images through a wide range of sensors and can ensure the safe operation of the smart grid by analyzing images. Feature extraction is critical to identify insulators in the aerial image. Existing approaches have primarily addressed this problem by using a single type of feature such as color feature, texture feature, or shape feature. However, a single type of feature usually leads to poor classification rates and missed detection in identifying insulators. Aiming to fully describe the characteristics of insulator and enhance the robustness of insulator against the complex background in aerial images, we combine three types of feature including color feature, texture feature, and shape feature towards a multi-type feature. Then, the multi-type feature is integrated with k-nearest neighbor classifier for automatic classifying insulators. Our experiment with 4500 aerial images demonstrates that the recognition rate is 99% by using this multi-type feature. Comparing to a single type of feature, our method yielded a better classification performance

    >

    No full text

    Aircraft detection in remote sensing images based on saliency and convolution neural network

    No full text
    Abstract New algorithms and architectures for the current industrial wireless sensor networks shall be explored to ensure the efficiency, robustness, and consistence in variable application environments which concern different issues, such as the smart grid, water supply, and gas monitoring. Object detection automatic in remote sensing images has always been a hot topic. Using the conventional deep convolution network based on region proposal for detection, there are many negative samples in the generated region proposal, which will affect the model detection precision and efficiency. Saliency uses the human visual attention mechanism to achieve the bottom-up object detection. Since replacing the selective search with saliency can greatly reduce the number of proposal areas, we will get some region of interests (RoIs) and their position information by using the saliency algorithm based on the background priori for the remote sensing image. And then, the position information is mapped to the feature vector of the whole image obtained by deep convolution neural network. Finally, the each RoI will be classified and fine-tuned bounding box. In this paper, our model is compared with Fast-RCNN that is the current state-of-the-art detection model. The mAP of our model reaches 99%, which is 12.4% higher than that of Fast-RCNN. In addition, we also study the effect of different iterations on model and find the model of 10,000 iterations already has a higher accuracy. Finally, we compare the results of different number of negative samples and find the detection accuracy is highest when the number of negative samples reaches 400

    TL-Net: A Novel Network for Transmission Line Scenes Classification

    No full text
    With the development of unmanned aerial vehicle (UAV) control technology, one of the recent trends in this research domain is to utilize UAVs to perform non-contact transmission line inspection. The RGB camera mounted on UAVs collects large numbers of images during the transmission line inspection, but most of them contain no critical components of transmission lines. Hence, it is a momentous task to adopt image classification algorithms to distinguish key images from all aerial images. In this work, we propose a novel classification method to remove redundant data and retain informative images. A novel transmission line scene dataset, namely TLS_dataset, is built to evaluate the classification performance of networks. Then, we propose a novel convolutional neural network (CNN), namely TL-Net, to classify transmission line scenes. In comparison to other typical deep learning networks, TL-Nets gain better classification accuracy and less memory consumption. The experimental results show that TL-Net101 gains 99.68% test accuracy on the TLS_dataset

    A Method of Insulator Faults Detection in Aerial Images for High-Voltage Transmission Lines Inspection

    No full text
    Insulator faults detection is an important task for high-voltage transmission line inspection. However, current methods often suffer from the lack of accuracy and robustness. Moreover, these methods can only detect one fault in the insulator string, but cannot detect a multi-fault. In this paper, a novel method is proposed for insulator one fault and multi-fault detection in UAV-based aerial images, the backgrounds of which usually contain much complex interference. The shapes of the insulators also vary obviously due to the changes in filming angle and distance. To reduce the impact of complex interference on insulator faults detection, we make full use of the deep neural network to distinguish between insulators and background interference. First of all, plenty of insulator aerial images with manually labelled ground-truth are collected to construct a standard insulator detection dataset ‘InST_detection’. Secondly, a new convolutional network is proposed to obtain accurate insulator string positions in the aerial image. Finally, a novel fault detection method is proposed that can detect both insulator one fault and multi-fault in aerial images. Experimental results on a large number of aerial images show that our proposed method is more effective and efficient than the state-of-the-art insulator fault detection methods

    Discussion paper: national technical guide for municipal infrastructure: background, project description, proposed commission, development process

    Get PDF
    Aussi disponible en fran\ue7ais: Document de travail: Guide technique national des infrastructures municipales: historique, description du projet, commission propos\ue9e, processus de d\ue9veloppementPeer reviewed: NoNRC publication: Ye
    corecore