113 research outputs found

    The impact of fill patterns on the fast ion instability in the ILC damping ring

    Full text link
    The ions produced via collisional ionization of the residual gas molecules in vacuum pipe with the circulating electron beam have deleterious effect on the beam properties and may become a limiting factor for the machine's performance. For the electron damping ring of the International Linear Collider (ILC), the ion instability is noticeable due to the ultra-low beam emittance with many bunches operation. In this paper, the different beam fill patterns are investigated and their effects on the fast ion instability are discussed. The simulations show that the mini train fill patterns can reduce the growth of the fast ion instability significantly.Comment: Proceedings of IPAC1

    Preliminary Study for an RF photocathode based electron injector for awake project

    Full text link
    AWAKE project, a proton driven plasma wakefield acceleration (PDPWA) experiment is approved by CERN. The PDPWA scheme consists of a seeding laser, a drive beam to establish the accelerating wakefields within the plasma cell; and a witness beam to be accelerated. The drive beam protons will be provided by the CERN's Super Proton Synchrotron (SPS). The plasma ionisation will be performed by a seeding laser and the drive beam protons to produce the accelerating wakefields. After establishing the wakefields, witness beam, namely, electron beam from a dedicated source should be injected into the plasma cell. The primary goal of this experiment is to demonstrate acceleration of a 5-15 \,MeV single bunch electron beam up to 1 \,GeV in a 10 \,m of plasma. This paper explores the possibility of an RF photocathode as the electron source for this PDPWA scheme based on the existing PHIN photo-injector at CERN. The modifications to the existing design, preliminary beam dynamics simulations in order to provide the required electron beam are presented in this paper.Comment: This work will be presented in IPAC 201

    Simulation Study of an LWFA-based Electron Injector for AWAKE Run 2

    Full text link
    The AWAKE experiment aims to demonstrate preservation of injected electron beam quality during acceleration in proton-driven plasma waves. The short bunch duration required to correctly load the wakefield is challenging to meet with the current electron injector system, given the space available to the beamline. An LWFA readily provides short-duration electron beams with sufficient charge from a compact design, and provides a scalable option for future electron acceleration experiments at AWAKE. Simulations of a shock-front injected LWFA demonstrate a 43 TW laser system would be sufficient to produce the required charge over a range of energies beyond 100 MeV. LWFA beams typically have high peak current and large divergence on exiting their native plasmas, and optimisation of bunch parameters before injection into the proton-driven wakefields is required. Compact beam transport solutions are discussed.Comment: Paper submitted to NIMA proceedings for the 3rd European Advanced Accelerator Concepts Workshop. 4 pages, 3 figures, 1 table Changes after revision: Figure 2: figures 2 and 3 of the previous version collated with plots of longitudinal electric field Line 45: E_0 = 96 GV/m Lines 147- 159: evaluation of beam loading made more accurate Lines 107 - 124: discussion of simulation geometry move

    Simulation Study of Electron Beam Acceleration with Non-Gaussian Transverse Profiles for AWAKE Run 2

    Get PDF
    In the physics plan for AWAKE Run 2, two known effects, beam loading the longitudinal wakefield and beam matching to the pure plasma ion channel, will be implemented for the better control of electron acceleration. It is founded in our study of beam matching that the transverse profile of the initial witness beam have a significant impact on its acceleration quality. In this paper, particle-in-cell (PIC) simulations are used to study factors that affect the acceleration quality of electron beams with different transverse profiles

    Future colliders based on a modulated proton bunch driven plasma wakefield acceleration

    Full text link
    Recent simulation shows that a self-modulated high energy proton bunch can excite a large amplitude plasma wakefield and accelerate an externally injected electron bunch to the energy frontier in a single stage acceleration through a long plasma channel. Based on this scheme, future colliders, either an electron-positron linear collider (e+-e- collider) or an electron-hadron collider (e-p collider) can be conceived. In this paper, we discuss some key design issues for an e+-e- collider and a high energy e-p collider, based on the existing infrastructure of the CERN accelerator complex.Comment: Proceedings of IPAC1

    High quality electron beam generation in a proton-driven hollow plasma wakefield accelerator

    Full text link
    Simulations of proton-driven plasma wakefield accelerators have demonstrated substantially higher accelerating gradients compared to conventional accelerators and the viability of accelerating electrons to the energy frontier in a single plasma stage. However, due to the strong intrinsic transverse fields varying both radially and in time, the witness beam quality is still far from suitable for practical application in future colliders. Here we demonstrate efficient acceleration of electrons in proton-driven wakefields in a hollow plasma channel. In this regime, the witness bunch is positioned in the region with a strong accelerating field, free from plasma electrons and ions. We show that the electron beam carrying the charge of about 10% of 1 TeV proton driver charge can be accelerated to 0.6 TeV with preserved normalized emittance in a single channel of 700 m. This high quality and high charge beam may pave the way for the development of future plasma-based energy frontier colliders.Comment: 10 pages, 7 figure

    Low-energy muons via frictional cooling

    Full text link
    Low-energy muon beams are useful for a range of physics experiments. We consider the production of low-energy muon beams with small energy spreads using frictional cooling. As the input beam, we take a surface muon source such as that at the Paul Scherrer Institute. Simulations show that the efficiency of low energy muon production can potentially be raised to 1%, which is significantly higher than that of current schemes
    • …
    corecore