26 research outputs found

    Description and Application of a Mathematical Method for the Analysis of Harmony

    Get PDF
    Harmony issues are widespread in human society and nature. To analyze these issues, harmony theory has been proposed as the main theoretical approach for the study of interpersonal relationships and relationships between humans and nature. Therefore, it is of great importance to study harmony theory. After briefly introducing the basic concepts of harmony theory, this paper expounds the five elements that are essential for the quantitative description of harmony issues in water resources management: harmony participant, harmony objective, harmony regulation, harmony factor, and harmony action. A basic mathematical equation for the harmony degree, that is, a quantitative expression of harmony issues, is introduced in the paper: HD=ai − bj, where a is the uniform degree, b is the difference degree, i is the harmony coefficient, and j is the disharmony coefficient. This paper also discusses harmony assessment and harmony regulation and introduces some application examples

    Cooperative evaluation mechanism based on the optimal decision of DE-CA-CR

    No full text

    Cooperative evaluation mechanism based on the optimal decision of DE-CA-CR

    No full text

    Yellow River Basin Management under Pressure. The Present State, Restoration and Protection: Lessons from a Special Issue

    No full text
    Ecological protection and high-quality development in the basin of the Yellow River, known as China’s “Mother River” and “the cradle of Chinese civilization”, have been receiving increasing attention because of the important role they play in China’s economic and social development, and its cultural heritage [...

    Spatiotemporal Patterns of Hydrological Variables in Water-Resource Regions of China

    No full text
    The spatiotemporal patterns of key hydrological variables across China were illustrated based on the developed Water and Energy Transfer Processes model in China (WEP-CN model). Time series of four key hydrological variables, namely, precipitation (P), runoff (R), infiltration (Inf), and actual evapotranspiration (ETa), were obtained over 60 years. Then, the temporal trends and spatial differences of these variables were analyzed using the Mann-Kendall and linear methods on a national scale and on the water resource regional scale. Moreover, we explored the drivers and constraints for changes in R, Inf, and ETa. The results showed: (1) Based on the coefficient of variations of P (5.24%), R (11.80%), Inf (2.57%), and ETa (3.77%), R was more fluctuating than the other variables. (2) These variables followed a similar trend of gradually decreasing from the southeast coast to the northwest inland. (3) Changes in R and Inf were caused mainly by P, having correlation coefficients with precipitation of 0.74 and 0.73, respectively. The ETa was constrained by a combination of P and energy. The results improved the refined and quantitative research on hydrological processes in China, identified the differences in hydrological variables between water-resource regions, and provided a useful supplement to the research of the large-scale hydrological process
    corecore