31 research outputs found

    Genetic Evaluation of 114 Chinese Short Stature Children in the Next Generation Era: a Single Center Study

    Get PDF
    Background/Aims: The genetics of human height is a frequently studied and complex issue. However, there is limited genetic research of short stature. To uncover the subgroup of patients to have higher yield and to propose a simplified diagnostic algorithm in the next generation era. Methods: This study included 114 Chinese children with height SDS ≤ -2.5 and unknown etiology from 2014 to 2015. Target/whole exome sequencing (referred as NGS) and chromosomal microarray analysis (CMA) were performed on the enrolled patients sequentially to identify potential genetic etiologies. The samples solved by NGS and CMA were retrospectively studied to evaluate the clinical pathway of the patients following a standard diagnostic algorithm. Results: In total, a potential genetic etiology was identified in 41 (36%) patients: 38 by NGS (33.3%), two by CMA (1.8%), and an additional one by both (0.9%). There were 46 different variants in 29 genes and 2 pathogenic CNVs identified. The diagnostic yield was significantly higher in patients with facial dysmorphism or skeletal abnormalities than those without the corresponding phenotype (P=0.006 and P=0.009, respectively, Pearson’s χ2 test). Retrospectively study the cohort indicate 83.3% patients eventually would be evaluated by NGS/CMA. Conclusion: This study confirms the utility of high-throughput molecular detection techniques for the etiological diagnosis of undiagnosed short stature and suggests that NGS could be used as a primary diagnostic strategy. Patients with facial dysmorphism and/or skeletal abnormalities are more likely to have a known genetic etiology. Moving NGS forward would simplified the diagnostic algorithm

    Strain-restricted transfer of ferromagnetic electrodes for constructing reproducibly superior-quality spintronic devices

    Get PDF
    Spintronic device is the fundamental platform for spin-related academic and practical studies. However, conventional techniques with energetic deposition or boorish transfer of ferromagnetic metal inevitably introduce uncontrollable damage and undesired contamination in various spin-transport-channel materials, leading to partially attenuated and widely distributed spintronic device performances. These issues will eventually confuse the conclusions of academic studies and limit the practical applications of spintronics. Here we propose a polymer-assistant strain-restricted transfer technique that allows perfectly transferring the pre-patterned ferromagnetic electrodes onto channel materials without any damage and change on the properties of magnetism, interface, and channel. This technique is found productive for pursuing superior-quality spintronic devices with high controllability and reproducibility. It can also apply to various-kind (organic, inorganic, organic-inorganic hybrid, or carbon-based) and diverse-morphology (smooth, rough, even discontinuous) channel materials. This technique can be very useful for reliable device construction and will facilitate the technological transition of spintronic study

    Integrated System for Auto-Registered Hyperspectral and 3D Structure Measurement at the Point Scale

    No full text
    Hyperspectral and 3D structure measurement are among the active research areas of remote sensing in recent years. The combination of these two kinds of information can provide improved outcomes distinctly, which is widely used in vegetation physiology, precision agriculture and radiative transfer modeling. However, the registration and synchronization has been overlooked in data acquisition. The mismatched characteristics have limited the potential application of the hyperspectral and 3D structure data as a complete data set. This paper proposes a laboratory prototype which can integrate the hyperspectral and 3D structure measurement at the point scale. The prism dispersion and laser triangulation ranging are performed in a common optical path as a result of the coplanar design of the critical optical devices. The hyperspectral data and depth data of the same object point are acquired from the same focal plane, which makes the data auto-registered spatially and temporally. Test experiment verifies the accuracy of the data provided by the prototype and the actual measurement experiment demonstrates the feasibility of the design in vegetation observation

    Botulinum Neurotoxin A Complex Recognizes Host Carbohydrates through Its Hemagglutinin Component

    No full text
    Botulinum neurotoxins (BoNTs) are potent bacterial toxins. The high oral toxicity of BoNTs is largely attributed to the progenitor toxin complex (PTC), which is assembled from BoNT and nontoxic neurotoxin-associated proteins (NAPs) that are produced together with BoNT in bacteria. Here, we performed ex vivo studies to examine binding of the highly homogeneous recombinant NAPs to mouse small intestine. We also carried out the first comprehensive glycan array screening with the hemagglutinin (HA) component of NAPs. Our data confirmed that intestinal binding of the PTC is partly mediated by the HA moiety through multivalent interactions between HA and host carbohydrates. The specific HA-carbohydrate recognition could be inhibited by receptor-mimicking saccharides

    Analysis of Space-Based Observed Infrared Characteristics of Aircraft in the Air

    No full text
    The space-based infrared observatory of aircraft in the air has the advantages of wide-area, full-time, and passive detection. The optical design parameters for space-based infrared sensors strongly rely on target observed radiation, but there is still a lack of insight into the causes of aircraft observation properties and the impact of instrument performance. A simulation model of space-based observed aircraft infrared characteristics was constructed for this provision, coupling the aircraft radiance with background radiance and instrument performance effects. It was validated by comparing the model predictions to data from both space-based and ground-based measurements. The validation results reveal the alignment between measurements and model predictions and the dependence of overall model accuracy on the background. Based on simulations, the radiance contributions of aircraft and background are quantitatively evaluated, and the detection spectral window for flying aircraft and its causes are discussed in association with instrumental performance effects. The analysis results indicate that the target-background (T-B) contrast is higher in the spectral ranges where aircraft radiation makes an important contribution. The background radiance plays a significant role overall, while the observed radiance at 2.5–3μm is mainly from skin reflection and plume radiance. The skin-reflected radiation absence affects the model reliability, and its reduction at nighttime reduces the T-B contrast. The difference in T-B self-radiation and the stronger atmospheric attenuation for background contribute to the higher contrast at 2.7 μm compared to the other spectral bands
    corecore