35 research outputs found

    Room temperature ionic liquid-mediated molecularly imprinted polymer monolith for the selective recognition of quinolones in pork samples

    No full text
    A novel molecularly imprinted polymer monolith was prepared by the room temperature ionic liquid-mediated in situ molecular imprinting technique, using norfloxacin (NOR) as the template, methacrylic acid as the functional monomer, ethylene glycol dimethacrylate as the cross-linker. The optimal synthesis conditions and recognition properties of NOR-imprinted monolithic column were investigated. The results indicated that the imprinted monoliths exhibited good ability of selective recognition against the template and its structural analog. Using the fabricated material as solid-phase extraction sorbent, a sample pre-treatment procedure of molecularly imprinted solid-phase extraction coupling with HPLC was developed for determination of trace quinolone residues in animal tissues samples. The recoveries ranging from 78.16 to 93.50% for eight quinolones antibiotics such as marbofloxacin, NOR, ciprofloxacin, danofloxacin, difloxacin, oxolinic acid, flumequine and enrofloxacin were obtained

    The efficacy and safety of tranexamic acid in rheumatoid arthritis patients undergoing simultaneous bilateral total knee arthroplasty: a multicenter retrospective study

    No full text
    Abstract Background The efficacy and safety of tranexamic acid (TXA) in reducing blood loss following total knee arthroplasty (TKA) in patients with osteoarthritis have been widely confirmed. However, there is still a paucity of the evidences regarding the effectiveness of TXA in patients with rheumatoid arthritis (RA). The purpose of the study is to explore the efficacy and safety of intravenous TXA on blood loss and transfusion risk following simultaneous bilateral TKA (SBTKA) in patients with RA. Methods As a multicenter retrospective study, a total of 74 patients diagnosed with RA who underwent SBTKA were assigned into TXA group (15 mg/kg intravenous TXA before skin incision, n = 50) and control group (no TXA use, n = 24). The primary outcomes were total blood loss (TBL) and intraoperative blood loss (IBL). The secondary outcomes were hemoglobin (Hb) and hematocrit (Hct) drop on postoperative day 3, transfusion rate and volume, ambulation time, length of stay, hospitalization expenses and the incidence of complications. Results The mean TBL, IBL and transfusion volume in TXA group were significantly lower than those in control group. The Hb and Hct drop on postoperative day 3 in control group were higher than those in TXA group (p0.05). Conclusions TXA could effectively reduce blood loss, decrease transfusion risk, shorten ambulation time and length of stay following SBTKA in patients with RA, without increasing the risk of complications

    Solvent selection criteria for temperature-resilient lithium–sulfur batteries

    No full text
    All-climate temperature operation capability and increased energy density have been recognized as two crucial targets, but they are rarely achieved together in rechargeable lithium (Li) batteries. Herein, we demonstrate an electrolyte system by using monodentate dibutyl ether with both low melting and high boiling points as the sole solvent. Its weak solvation endows an aggregate solvation structure and low solubility toward polysulfide species in a relatively low electrolyte concentration (2 mol L-1). These features were found to be vital in avoiding dendrite growth and enabling Li metal Coulombic efficiencies of 99.0%, 98.2%, and 98.7% at 23 °C, -40 °C, and 50 °C, respectively. Pouch cells employing thin Li metal (50 μm) and high-loading sulfurized polyacrylonitrile (3.3 mAh cm-2) cathodes (negative-to-positive capacity ratio = 2) output 87.5% and 115.9% of their room temperature capacity at -40 °C and 50 °C, respectively. This work provides solvent-based design criteria for a wide temperature range Li-sulfur pouch cells

    Conjugated polymer nanodots as ultrastable long-term trackers to understand mesenchymal stem cell therapy in skin regeneration

    No full text
    Stem cell–based therapies hold great promise in providing desirable solutions for diseases that cannot be effectively cured by conventional therapies. To maximize the therapeutic potentials, advanced cell tracking probes are essential to understand the fate of transplanted stem cells without impairing their properties. Herein, conjugated polymer (CP) nanodots are introduced as noninvasive fluorescent trackers with high brightness and low cytotoxicity for tracking of mesenchymal stem cells (MSCs) to reveal their in vivo behaviors. As compared to the most widely used commercial quantum dot tracker, CP nanodots show significantly better long-term tracking ability without compromising the features of MSCs in terms of proliferation, migration, differentiation, and secretome. Fluorescence imaging of tissue sections from full-thickness skin wound–bearing mice transplanted with CP nanodot-labeled MSCs suggests that paracrine signaling of the MSCs residing in the regenerated dermis is the predominant contribution to promote skin regeneration, accompanied with a small fraction of endothelial differentiation. The promising results indicate that CP nanodots could be used as next generation of fluorescent trackers to reveal the currently ambiguous mechanisms in stem cell therapies through a facile and effective approach.ASTAR (Agency for Sci., Tech. and Research, S’pore

    Tailoring Electrolyte Solvation for Li Metal Batteries Cycled at Ultra-Low Temperature.

    No full text
    Lithium metal batteries (LMBs) hold the promise to pushing cell level energy densities beyond 300 Wh kg-1 while operating at ultra-low temperatures (< -30°C). Batteries capable of both charging and discharging at these temperature extremes are highly desirable due to their inherent reduction of external warming requirements. Here we demonstrate that the local solvation structure of the electrolyte defines the charge-transfer behavior at ultra-low temperature, which is crucial for achieving high Li metal coulombic efficiency (CE) and avoiding dendritic growth. These insights were applied to Li metal full cells, where a high-loading 3.5 mAh cm-2 sulfurized polyacrylonitrile (SPAN) cathode was paired with a one-fold excess Li metal anode. The cell retained 84 % and 76 % of its room temperature capacity when cycled at -40 and -60 °C, respectively, which presented stable performance over 50 cycles. This work provides design criteria for ultra-low temperature LMB electrolytes, and represents a defining step for the performance of low-temperature batteries
    corecore