2 research outputs found
Table_1_Evolutionary history and global spatiotemporal pattern of alfalfa mosaic virus.DOCX
Alfalfa mosaic virus (AMV) is an important plant virus causing considerable economic loss to alfalfa production. Knowledge of the evolutionary and demographic history of the pathogen is limited but essential to the development of effective and sustainable pathogen management schemes. In this study, we performed worldwide phylodynamic analyses of AMV based on 154 nucleotide sequences of the coat protein gene, sampled from 1985 to 2020, to understand the epidemiology of this pathogen. Bayesian phylogenetic reconstruction estimates that the crown group of AMV dates back to 1840 (95% credibility interval, 1687β1955). We revealed that AMV continuously evolves at a rate of 4.14βΓβ10β4 substitutions/site/year (95% credibility interval, 1.04βΓβ10β4βββ6.68βΓβ10β4). Our phylogeographic analyses identified multiple migration links between Europe and other regions, implying that Europe played a key role in spreading the virus worldwide. Further analyses showed that the clustering pattern of AMV isolates is significantly correlated to geographic regions, indicating that geography-driven adaptation may be a factor that affects the evolution of AMV. Our findings may be potentially used in the development of effective control strategies for AMV.</p
DataSheet_1_Metabolomic and transcriptomice analyses of flavonoid biosynthesis in apricot fruits.docx
IntroductionFlavonoids, as secondary metabolites in plants, play important roles in many biological processes and responses to environmental factors.MethodsApricot fruits are rich in flavonoid compounds, and in this study, we performed a combined metabolomic and transcriptomic analysis of orange flesh (JN) and white flesh (ZS) apricot fruits.Results and discussionA total of 222 differentially accumulated flavonoids (DAFs) and 15855 differentially expressed genes (DEGs) involved in flavonoid biosynthesis were identified. The biosynthesis of flavonoids in apricot fruit may be regulated by 17 enzyme-encoding genes, namely PAL (2), 4CL (9), C4H (1), HCT (15), C3βH (4), CHS (2), CHI (3), F3H (1), F3βH (CYP75B1) (2), F3β5βH (4), DFR (4), LAR (1), FLS (3), ANS (9), ANR (2), UGT79B1 (6) and CYP81E (2). A structural gene-transcription factor (TF) correlation analysis yielded 3 TFs (2 bHLH, 1 MYB) highly correlated with 2 structural genes. In addition, we obtained 26 candidate genes involved in the biosynthesis of 8 differentially accumulated flavonoids metabolites in ZS by weighted gene coexpression network analysis. The candidate genes and transcription factors identified in this study will provide a highly valuable molecular basis for the in-depth study of flavonoid biosynthesis in apricot fruits.</p