32 research outputs found

    Effects of Cations and PH on Antimicrobial Activity of Thanatin and s-Thanatin against _Escherichia coli_ ATCC25922 and _B. subtilis_ ATCC 21332

    Get PDF
    Thanatin and s-thanatin were insect antimicrobial peptides which have shown potent antimicrobial activities on a variety of microbes. In order to investigate the effect of cations and pH on the activity of these peptides against Gram-negative bacteria and Gram-positive bacteria, the antimicrobial activities of both peptides were studied in increasing concentrations of monovalent cations (K^+^ and Na^+^), divalent cations (Ca^2+^ and Mg^2+^) and H^+^. The NCCLS broth microdilution method showed that both peptides were sensitive to the presence of cations. The divalent cations showed more antagonized effect on the activity against Gram-negative bacteria than the monovalent cations, since the two peptides lost the ability to inhibit bacterial growth at a very low concentration. In addition, the activities of both peptides tested were not significantly affected by pH. Comparing to studies of other antibacterial peptide activities, our data support a hypothesis that positive ions affect the sensitivity to cation peptides

    The constraints between amino acids influence the unequal distribution of codons and protein sequence evolution

    No full text
    Four nucleotides (A, U, C and G) constitute 64 codons at free combination but 64 codons are unequally assigned to 21 items (20 amino acids plus one stop). About 500 amino acids are known but only 20 are selected to make up the proteins. However, the relationships between amino acid and codon and between 20 amino acids have been unclear. In this paper, we studied the relationships between 20 amino acids in 33 species and found there were three constraints between 20 amino acids, such as the relatively stable mean carbon and hydrogen (C : H) ratios (0.50), similarity interactions between the constituent ratios of amino acids, and the frequency of amino acids according with Poisson distribution under certain conditions. We demonstrated that the unequal distribution of 64 codons and the choice of amino acids in molecular evolution would be constrained to remain stable C : H ratios. The constituent ratios and frequency of 20 amino acids in a species or a protein are two determinants of protein sequence evolution, so this finding showed the constraints between 20 amino acids played an important role in protein sequence evolution

    Detection of Hepatitis C virus RNA using a novel hybridization chain reaction method that competitively dampens cascade amplification.

    No full text
    The hybridization chain reaction (HCR) is widely used for biosensing. However, HCR does not provide the required sensitivity. In this study, we reported a method to improve the sensitivity of HCR by dampening the cascade amplification. First, we designed a biosensor based on HCR, and an initiator DNA was used to trigger the cascade amplification. Optimization of the reaction was then performed, and the results showed that the limit of detection (LOD) for the initiator DNA was about 2.5 nM. Second, we designed a series of inhibitory DNAs to dampen the HCR cascade amplification, and DNA dampeners (50 nM) were applied in the presence of the DNA initiator (50 nM). One of the DNA dampeners (D5) showed the best inhibitory efficiency of greater than 80%. This was further applied at concentrations ranging from 0 nM to 10 nM to prohibit the HCR amplification caused by a 2.5 nM initiator DNA (the limit of detection for this initiator DNA). The results showed that 0.156 nM of D5 could significantly inhibit the signal amplification (p<0.05). Additionally, the limit of detection for the dampener D5 was 16 times lower than that for the initiator DNA. Based on this detection method, we achieved a detection limit as low as 0.625 nM for HCV-RNAs. In summary, we developed a novel method with improved sensitivity to detect the target designed to prohibit the HCR cascade. Overall, this method could be used to qualitatively detect the presence of single-stranded DNA/RNA

    Detection of monkeypox virus using helicase dependent amplification and recombinase polymerase amplification combined with lateral flow test

    No full text
    Abstract The monkeypox virus (MPXV) is a zoonotic DNA virus that belongs to the poxvirus family. Conventional laboratory methods for detecting MPXV are complex and expensive, making them unsuitable for detecting the virus in regions with limited resources. In this study, we using the Helicase dependent amplification (HDA) method and the Recombinase polymerase amplification (RPA) technique in combination with the lateral flow test (LFT), together with a self-designed qPCR technique for the detection of the MPXV specific conserved fragment F3L, to compare the sensitivity and specificity of the three assays. By analyzing the sensitivity detection results using Probit, it can be seen that the limit of detection (LOD) of the HDA-LFT detection target is 9.86 copies/µL (95% confidence interval, CI 7.52 copies/µL lower bound), the RPA-LFT detection target is 6.97 copies/µL (95% CI 3.90 copies/µL lower bound), and the qPCR detection target is 479.24 copies/mL (95% CI 273.81 copies/mL lower bound). The specificity test results showed that the specificity of the three methods mentioned above was higher than 90% in detecting pseudoviruses of the same genus of MPXV. The simple, highly sensitive, and specific MPXV assay developed in this study is anticipated to provide a solid foundation for future applications in the early screening, diagnosis, and evaluation of the efficacy of MPXV. This is the first time the HDA-LFT assay has been utilized to detect MPXV infection

    MOESM1 of Bioscreening and expression of a camel anti-CTGF VHH nanobody and its renaturation by a novel dialysis–dilution method

    No full text
    Additional file 1: Figure S1. The aggregated particles after normal dilution by dynamic light scattering. The protein samples immediately after normal dilution were diluted 100 times with PBS before sent for dynamic light scattering measurement. The results indicated there were numerous particles of several hundreds of nanometer in diameter. Figure S2. The aggregates after normal dilution by TEM

    Self-assembly-Induced Highly Efficient Electrochemiluminescence of Copper Nanocluster

    No full text
    Metal nanocluster has been recently developed as a promising electrochemiluminescence (ECL) emitters due to its unique electronic structure and distinctive optical and electrochemistry properties. However, the low ECL efficiency and high cost are still the serious challenges for metal nanocluster-based ECL emitter. Herein, the self-assembly of 4,6-dimethyl-2-mercaptopyrimidine (DMPM) stabilized copper CuNCs (DMPM-CuNCs) into nanosheets was described in detail for the first time, which significantly strengthening its photoluminescence efficiency from 4.3% to 39.3% and improving its photostability and oxidation stability. Most importantly, the ECL efficiency of self-assembled DMPM-CuNCs (DMPM-CuNCs) was markedly enhanced to 39%, reaching a relative high level of reported metal nanocluster-based ECL emitters. This work propose a simple and effective way to improving inherent ECL performance of CuNCs, providing a new guidance for further development of low-cost and high efficiency ECL emitters

    Elevated Gab2 induces tumor growth and angiogenesis in colorectal cancer through upregulating VEGF levels

    No full text
    Abstract Background Grb2-associated binder 2 (Gab2) is a scaffolding protein that serves as a critical signaling amplifier downstream of tyrosine kinase receptors. Our previous study has shown that Gab2 induces epithelial-to-mesenchymal transition (EMT) and promotes metastasis in colorectal cancer (CRC). However, the role of Gab2 in CRC growth and angiogenesis remains unclear. Methods The expression of vascular endothelial growth factor (VEGF) in different colorectal tissues was detected by immunohistochemistry and qRT-PCR to evaluate its correlation with Gab2. Lentiviral vectors bearing Gab2 gene and its small interfering RNAs were constructed and transfected into CRC cell lines. The effects of Gab2 on the cell proliferation in vitro and tumorigenesis in vivo, were examined via CCK‑8 assay, colony formation assay as well as tumorigenicity assay respectively. Moreover, to assess its potential role in tumor growth and angiogenesis, the expression of Ki67, CD34 and vascular endothelial growth factor receptor-2 (VEGFR2) were detected by immunohistochemistry in CRC cells tumors. Finally, we evaluated the impact of Gab2 on the expression of c-Myc and VEGF, and the probable effect of mechanistic targeted extracellular signal-regulated kinase (ERK) pathway in suppressing tumor growth and angiogenesis. Results Up-regulation of Gab2 expression was found to be positively correlated with VEGF in CRC tissues. Exogenous expression of Gab2 obviously promoted, whereas silencing of Gab2 inhibited, proliferation and clone formation of human CRC cells in vitro. Of note, Gab2 enhanced tumorigenesis and tumor growth in mouse xenografts with high Ki67 expression, and led to an increased vessel density with strong CD34 and VEGFR2 activity. In addition, elevated Gab2 expression obviously up-regulated the expression of VEGF, and stimulated the activation of its downstream genes, ERK1/2 and c-Myc in CRC cells. Instead, down-regulated Gab2 expression significantly reduced the levels of VEGF, and inhibited the transduction of ERK/c-Myc pathway. Finally, we revealed that mechanistic target of mitogen-activated protein kinase (MEK) could attenuate Gab2-induced tumor growth and angiogenesis via altering VEGF and c-Myc levels. Conclusions The results from our study suggest that Gab2 promotes intestinal tumor growth and angiogenesis through upregulation of VEGF expression mediated by the MEK/ERK/c-Myc pathway

    Additional file 3: Figure S3. of Combined application of anti-VEGF and anti-EGFR attenuates the growth and angiogenesis of colorectal cancer mainly through suppressing AKT and ERK signaling in mice model

    No full text
    The levels of IL6 in CRC cell tumors. A The expression of IL6 was quantitatively analyzed in different SW620 cells tumors. B ELISA assay of different LoVo cells tumors (one clone, A). The data are representative of at least three different experiments ± SEM. NS: No statistical significance; *P < 0.05 (TIF 1783 kb

    Additional file 1: Figure S1. of Combined application of anti-VEGF and anti-EGFR attenuates the growth and angiogenesis of colorectal cancer mainly through suppressing AKT and ERK signaling in mice model

    No full text
    Effect of different anti-VEGF mAb or anti-EGFR mAb concentration on the proliferation of SW620 and LoVo cells in vitro. A The proliferation rate of SW620 and LoVo cells were analyzed by CCK-8 assay in different anti-VEGF mAb concentration. B The proliferation rate of SW620 and LoVo cells were analyzed by CCK-8 assay in different anti-EGFR mAb concentration. (TIF 1121 kb

    Clinical application and detection techniques of liquid biopsy in gastric cancer

    No full text
    Abstract Gastric cancer (GC) is one of the most common tumors worldwide and the leading cause of tumor-related mortality. Endoscopy and serological tumor marker testing are currently the main methods of GC screening, and treatment relies on surgical resection or chemotherapy. However, traditional examination and treatment methods are more harmful to patients and less sensitive and accurate. A minimally invasive method to respond to GC early screening, prognosis monitoring, treatment efficacy, and drug resistance situations is urgently needed. As a result, liquid biopsy techniques have received much attention in the clinical application of GC. The non-invasive liquid biopsy technique requires fewer samples, is reproducible, and can guide individualized patient treatment by monitoring patients' molecular-level changes in real-time. In this review, we introduced the clinical applications of circulating tumor cells, circulating free DNA, circulating tumor DNA, non-coding RNAs, exosomes, and proteins, which are the primary markers in liquid biopsy technology in GC. We also discuss the current limitations and future trends of liquid biopsy technology as applied to early clinical biopsy technology
    corecore