38 research outputs found
Polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) in sediments from four bays of the Yellow Sea, North China
The distribution characteristics and potential sources of polybrominated diphenyl ethers (PBDEs) and alternative brominated flame retardants (aBFRs) were investigated in 54 surface sediment samples from four bays (Taozi Bay, Sishili Bay, Dalian Bay, and Jiaozhou Bay) of North China's Yellow Sea. Of the 54 samples studied, 51 were collected from within the four bays and 3 were from rivers emptying into Jiaozhou Bay. Decabromodiphenylethane (DBDPE) was the predominant flame retardant found, and concentration ranged from 0.16 to 39.7 ng g(-1) dw and 1.13-49.9 ng g(-1) dw in coastal and riverine sediments, respectively; these levels were followed by those of BDE 209, and its concentrations ranged from n.d. to 10.2 ng g(-1) dw and 0.05-7.82 ng g(-1) dw in coastal and riverine sediments, respectively. The levels of DBDPE exceeded those of decabromodiphenyl ether (BDE 209) in most of the samples in the study region, whereas the ratio of DBDPE/BDE 209 varied among the four bays. This is indicative of different usage patterns of brominated flame retardants (BFRs) and also different hydrodynamic conditions among these bay areas. The spatial distribution and composition profile analysis indicated that BFRs in Jiaozhou Bay and Dalian Bay were mainly from local sources, whereas transport from Laizhou Bay by coastal currents was the major source of BFRs in Taozi Bay and Sishili Bay. Both the Sigma PBDEs and Sigma aBFRs (sum of pentabromotoluene (PBT), 2,3-diphenylpropyl-2,4,6-tribromophenyl ether (DPTE), pentabromoethylbenzene (PBEB), and hexabromobenzene (HBB)) were at low concentrations in all the sediments. This is probably attributable to a combination of factors such as low regional usage of these products, atmospheric deposition patterns, coastal currents transportation patterns, and degradation processes for higher BDE congeners. This paper is the first study that has investigated the levels of DBDPE in the coastal sediments of China's Yellow Sea. (C) 2016 Elsevier Ltd. All rights reserved
Characterization of Low-Molecular-Weight Dissolved Organic Matter Using Optional Dialysis and Orbitrap Mass Spectrometry
Low-molecular-weight (LMW, wa (weighted average of O/C) and low H/Cwa. Conversely, such dialysates had numerous aliphatic chains with high H/Cwa and low O/Cwa compared to SRFA. In particular, LMW-DOM below 200 Da was identified by Orbitrap MS. This work provides an operational program for identifying LMW-DOM based on the SRFA standard and MS analysis
Particulate and Dissolved Black Carbon in Coastal China Seas: Spatiotemporal Variations, Dynamics, and Potential Implications
Elaborating the spatiotemporal variations and dynamic mechanisms of black carbon (BC) in coastal seas, the geographically pivotal intermediate zones that link the terrestrial and open oceanic ecosystems, will contribute significantly to refine the regional and global BC geochemistry. In this study, we implemented a large spatial-scale and multiseason and -layer seawater sampling campaign in high BC emission influenced coastal China seas (Bohai Sea and Northern Yellow Sea) and quantified the thermal/optical reflectance-based particulate BC (PBC) and benzene polycarboxylic acids-based dissolved BC (DBC). We found that the climate and its associated hydrological effects (including the intensive resuspension and coastal current transport) largely regulate both PBC and DBC spatiotemporal variations and dynamics. In combination with previous work on upstream rivers and downstream open ocean, a significant and continuous decrease in the DBC aromatic condensation was observed along the river-to-ocean continuum, probably due to the increment of the photochemical degradation during the waterborne transport. Based on our DBC methodological development, i.e., the determination and subsequent inclusion of the nitrated BC molecular markers, the magnitudes of the current global DBC fluxes and pools were updated. After the update, the DBC fluxes from atmospheric deposition and riverine delivery were estimated at rates of 4.3 and 66.3 Tg yr(-1), respectively, and the global oceanic DBC pool was approximately 36 Gt. This update will greatly assist in constructing a more robust regional and global DBC and BC cycling and budgets
Economic benefit of ecological remediation of mercury pollution in southwest China 2007–2022
Methylmercury (MeHg) exposure via rice consumption poses health risk to residents in mercury contaminated areas, such as the Wanshan Hg mining area (WSMA) in southwest China. Making use of the published data for WSMA, this study developed a database of rice MeHg concentrations for different villages in this region for the years of 2007, 2012, 2017, and 2019. The temporal changes of human MeHg exposure, health effects, and economic benefits under different ecological remediation measures were then assessed. Results from this study revealed a decrease of 3.88 μg/kg in rice MeHg concentration and a corresponding reduction of 0.039 μg/kg/d in probable daily intake of MeHg in 2019 compared to 2007 on regional average in the WSMA. Ecological remediation measures in this region resulted in the accumulated economic benefits of 2.43 million (0.38 % of regional total Gross Domestic Product). Planting structure adjustment generates the greatest economic benefits in the short term, whereas pollution source treatment maximizes economic benefits in the long term and prevents the perturbations from flooding event. These findings demonstrate the importance of ecological remediation measures in Hg polluted areas and provide the foundation for risk assessment of human MeHg exposure via rice consumption