34 research outputs found

    Particulate and Dissolved Black Carbon in Coastal China Seas: Spatiotemporal Variations, Dynamics, and Potential Implications

    No full text
    Elaborating the spatiotemporal variations and dynamic mechanisms of black carbon (BC) in coastal seas, the geographically pivotal intermediate zones that link the terrestrial and open oceanic ecosystems, will contribute significantly to refine the regional and global BC geochemistry. In this study, we implemented a large spatial-scale and multiseason and -layer seawater sampling campaign in high BC emission influenced coastal China seas (Bohai Sea and Northern Yellow Sea) and quantified the thermal/optical reflectance-based particulate BC (PBC) and benzene polycarboxylic acids-based dissolved BC (DBC). We found that the climate and its associated hydrological effects (including the intensive resuspension and coastal current transport) largely regulate both PBC and DBC spatiotemporal variations and dynamics. In combination with previous work on upstream rivers and downstream open ocean, a significant and continuous decrease in the DBC aromatic condensation was observed along the river-to-ocean continuum, probably due to the increment of the photochemical degradation during the waterborne transport. Based on our DBC methodological development, i.e., the determination and subsequent inclusion of the nitrated BC molecular markers, the magnitudes of the current global DBC fluxes and pools were updated. After the update, the DBC fluxes from atmospheric deposition and riverine delivery were estimated at rates of 4.3 and 66.3 Tg yr(-1), respectively, and the global oceanic DBC pool was approximately 36 Gt. This update will greatly assist in constructing a more robust regional and global DBC and BC cycling and budgets

    Economic benefit of ecological remediation of mercury pollution in southwest China 2007–2022

    No full text
    Methylmercury (MeHg) exposure via rice consumption poses health risk to residents in mercury contaminated areas, such as the Wanshan Hg mining area (WSMA) in southwest China. Making use of the published data for WSMA, this study developed a database of rice MeHg concentrations for different villages in this region for the years of 2007, 2012, 2017, and 2019. The temporal changes of human MeHg exposure, health effects, and economic benefits under different ecological remediation measures were then assessed. Results from this study revealed a decrease of 3.88 μg/kg in rice MeHg concentration and a corresponding reduction of 0.039 μg/kg/d in probable daily intake of MeHg in 2019 compared to 2007 on regional average in the WSMA. Ecological remediation measures in this region resulted in the accumulated economic benefits of 38.7millionduring2007–2022,ofwhich84 38.7 million during 2007–2022, of which 84 % was from pollution source treatment and 16 % from planting structure adjustment. However, a flooding event in 2016 led to an economic loss of 2.43 million (0.38 % of regional total Gross Domestic Product). Planting structure adjustment generates the greatest economic benefits in the short term, whereas pollution source treatment maximizes economic benefits in the long term and prevents the perturbations from flooding event. These findings demonstrate the importance of ecological remediation measures in Hg polluted areas and provide the foundation for risk assessment of human MeHg exposure via rice consumption

    Antibiotics pollution in Jiulong River estuary: Source, distribution and bacterial resistance

    No full text
    SOA [200805064, 200805065, 200905011, 201005016]; Natural Sciences Foundation of China [40706042]To gain insight into the antibiotic pollution in the Jiulong River estuary and the pollutant sources, we analyzed the concentration of 22 widely-used antibiotics in water samples collected from the river and estuary, 17 and 18 sampling sites, respectively. Contamination with sulfonamides, quinolones and chloramphenicols was frequently detected and the distribution pattern of antibiotics suggested that most of the pollutants are from the Jiulong River, especially from the downstream watersheds. To reveal the ecological effects, we isolated 35 bacterial strains from the estuary and analyzed their antibiotic resistance to the eight most frequently detected antibiotics. The bacteria were subsequently classified into seven different genera by 16SrDNA sequencing. Up to 97.1% of the bacteria showed resistance and 70.6% of strains showed multi-resistance to these antibiotics, especially to sulfonamides. This study demonstrated a pattern of antibiotic contamination in the Jiulong River and its estuary and illustrated high bacterial antibiotic resistance which was significantly correlated with the average antibiotics concentrations and detected frequencies in the estuary. (C) 2011 Elsevier Ltd. All rights reserved
    corecore