5 research outputs found

    Bacteria-Activated Janus Particles Driven by Chemotaxis

    No full text
    In the development of biocompatible nano-/micromotors for drug and cargo delivery, motile bacteria represent an excellent energy source for biomedical applications. Despite intense research of the fabrication of bacteria-based motors, how to effectively utilize the instinctive responses of bacteria to environmental stimuli in the fabrication process, particularly, chemotaxis, remains an urgent and critical issue. Here, by developing a molecular-dynamics model of bacterial chemotaxis, we present an investigation of the transport of a bacteria-activated Janus particle driven by chemotaxis. Upon increasing the stimuli intensity, we find that the transport of the Janus particle undergoes an intriguing second-order state transition: from a composite random walk, combining power-law-distributed truncated LeĢvy flights with Brownian jiggling, to an enhanced directional transport with size-dependent reversal of locomotion. A state diagram of Janus-particle transport depending on the stimuli intensity and particle size is presented, which allows approaches to realize controllable and predictable propulsion directions. The physical mechanism of these transport behaviors is revealed by performing a theoretical modeling based on the bacterial noise and Janus geometries. Our findings could provide a fundamental insight into the physics underlying the transport of anisotropic particles driven by microorganisms and highlight stimulus-response techniques and asymmetrical design as a versatile strategy to possess a wide array of potential applications for future biocompatible nano-/microdevices

    Table_1_Effects of stable and fluctuating soil water on the agronomic and biological performance of root vegetables.docx

    No full text
    Compared to fluctuating soil water (FW) conditions, stable soil water (SW) can increase plant water use efficiency (WUE) and improve crop growth and aboveground yield. It is unknown, however, how stable and fluctuating soil water affect root vegetables. Here, the effects of SW and FW were studied on cherry radish in a pot experiment, using negative pressure irrigation and conventional irrigation, respectively. The assessed effects included agronomic parameters, physiological indices, yield, quality and WUE of cherry radish. Results showed that under similarly average soil water contents, compared with FW, SW increased plant photosynthetic rate, stomatal conductance and transpiration rate, decreased leaf proline content by 13.7ā€“73.3% and malondialdehyde content by 12.5ā€“40.0%, and increased soluble sugars content by 6.3ā€“22.1%. Cherry radish had greater biomass accumulation and nutrient uptake in SW than in FW. Indeed, SW increased radish output by 34.6ā€“94.1% with no influence on root/shoot ratio or root quality. In conclusion, soil water stability affected directly the water physiological indicators of cherry radish and indirectly its agronomic attributes and nutrient uptake, which in turn influenced the crop biomass and yield, as well as WUE. This study provides a new perspective for improving agronomy of root crops and WUE through managing soil water stability.</p

    Polymerization-Induced Interfacial Self-Assembly of Janus Nanoparticles in Block Copolymers: Reaction-Mediated Entropy Effects, Diffusion Dynamics, and Tailorable Micromechanical Behaviors

    No full text
    Polymerization-induced self-assembly (PISA) has become widely recognized as a robust and efficient route to produce nanostructured systems toward functionally superior materials. Herein, by combining mesoscale simulations and micromechanical modeling, we report the structural control over the interfacial organization and the resulted micromechanical behaviors of novel nanocomposites designed based on the PISA of initiator-modified Janus nanoparticles in diblock copolymers. Our simulations demonstrate that the off-center distribution of these functionalized Janus nanoparticles with respect to phase interface can be precisely regulated by tuning the reaction kinetics and the concentration of monomers dispersed in polymer microdomains. Theoretical calculation reveals that such polymerization-induced interfacial self-assembly of Janus nanoparticles is fundamentally attributed to a unique entropy effect mediated by the reaction. The diffusion dynamics of monomers in the entanglement mesh of the diblock copolymers is also examined to evaluate the efficiency of the structural control governed by polymerization in the polymer matrix. Furthermore, the combination of techniques allows us to determine how the interfacial polymerization of Janus nanoparticles influences the micromechanical behaviors, such as the elastic fields, modulus, and failure, fracture behaviors of the nanocomposites. The findings have a bearing on enriching our understanding on the thermodynamic nature of polymer nanocomposites and suggest design guidelines for creating block copolymer-based functional materials of programmable interfacial nanostructures correlated with controlled mechanical performance

    How Implementation of Entropy in Driving Structural Ordering of Nanoparticles Relates to Assembly Kinetics: Insight into Reaction-Induced Interfacial Assembly of Janus Nanoparticles

    No full text
    The ability to understand and exploit entropic contributions to ordering transition is of essential importance in the design of self-assembling systems with well-controlled structures. However, much less is known about the role of assembly kinetics in entropy-driven phase behaviors. Here, by combining computer simulations and theoretical analysis, we report that the implementation of entropy in driving phase transition significantly depends on the kinetic process in the reaction-induced self-assembly of newly designed nanoparticle systems. In particular, such systems comprise binary Janus nanoparticles at the fluidā€“fluid interface and undergo phase transition driven by entropy and controlled by the polymerization reaction initiated from the surfaces of just one component of nanoparticles. Our simulations demonstrate that the competition between the reaction rate and the diffusive dynamics of nanoparticles governs the implementation of entropy in driving the phase transition from randomly mixed phase to intercalated phase in these interfacial nanoparticle mixtures, which thereby results in diverse kinetic pathways. At low reaction rates, the transition exhibits abrupt jump in the mixing parameter, in a similar way to first-order, equilibrium phase transition. Increasing the reaction rate diminishes the jumps until the transitions become continuous, behaving as a second-order-like phase transition, where a critical exponent, characterizing the transition, can be identified. We finally develop an analytical model of the blob theory of polymer chains to complement the simulation results and reveal essential scaling laws of the entropy-driven phase behaviors. In effect, our results allow for further opportunities to amplify the entropic contributions to the materials design via kinetic control

    How Implementation of Entropy in Driving Structural Ordering of Nanoparticles Relates to Assembly Kinetics: Insight into Reaction-Induced Interfacial Assembly of Janus Nanoparticles

    No full text
    The ability to understand and exploit entropic contributions to ordering transition is of essential importance in the design of self-assembling systems with well-controlled structures. However, much less is known about the role of assembly kinetics in entropy-driven phase behaviors. Here, by combining computer simulations and theoretical analysis, we report that the implementation of entropy in driving phase transition significantly depends on the kinetic process in the reaction-induced self-assembly of newly designed nanoparticle systems. In particular, such systems comprise binary Janus nanoparticles at the fluidā€“fluid interface and undergo phase transition driven by entropy and controlled by the polymerization reaction initiated from the surfaces of just one component of nanoparticles. Our simulations demonstrate that the competition between the reaction rate and the diffusive dynamics of nanoparticles governs the implementation of entropy in driving the phase transition from randomly mixed phase to intercalated phase in these interfacial nanoparticle mixtures, which thereby results in diverse kinetic pathways. At low reaction rates, the transition exhibits abrupt jump in the mixing parameter, in a similar way to first-order, equilibrium phase transition. Increasing the reaction rate diminishes the jumps until the transitions become continuous, behaving as a second-order-like phase transition, where a critical exponent, characterizing the transition, can be identified. We finally develop an analytical model of the blob theory of polymer chains to complement the simulation results and reveal essential scaling laws of the entropy-driven phase behaviors. In effect, our results allow for further opportunities to amplify the entropic contributions to the materials design via kinetic control
    corecore