37 research outputs found

    Non-invasive detection of lymphoma with circulating tumor DNA features and protein tumor markers

    Get PDF
    BackgroundAccording to GLOBOCAN 2020, lymphoma ranked as the 9th most common cancer and the 12th leading cause of cancer-related deaths worldwide. Traditional diagnostic methods rely on the invasive excisional lymph node biopsy, which is an invasive approach with some limitations. Most lymphoma patients are diagnosed at an advanced stage since they are asymptomatic at the beginning, which has significantly impacted treatment efficacy and prognosis of the disease.MethodThis study assessed the performance and utility of a newly developed blood-based assay (SeekInCare) for lymphoma early detection. SeekInCare utilized protein tumor markers and a comprehensive set of cancer-associated genomic features, including copy number aberration (CNA), fragment size (FS), end motif, and lymphoma-related virus, which were profiled by shallow WGS of cfDNA.ResultsProtein marker CA125 could be used for lymphoma detection independent of gender, and the sensitivity was 27.8% at specificity of 98.0%. After integrating these multi-dimensional features, 77.8% sensitivity was achieved at specificity of 98.0%, while its NPV and PPV were both more than 92% for lymphoma detection. The sensitivity of early-stage (I-II) lymphoma was up to 51.3% (47.4% and 55.0% for stage I and II respectively). After 2 cycles of treatment, the molecular response of SeekInCare was correlated with the clinical outcome.ConclusionIn summary, a blood-based assay can be an alternative to detect lymphoma with adequate performance. This approach becomes particularly valuable in cases where obtaining tissue biopsy is difficult to obtain or inconclusive

    Inside-out Ca2+ signalling prompted by STIM1 conformational switch

    Get PDF
    Store-operated Ca(2+) entry mediated by STIM1 and ORAI1 constitutes one of the major Ca(2+) entry routes in mammalian cells. The molecular choreography of STIM1–ORAI1 coupling is initiated by endoplasmic reticulum (ER) Ca(2+) store depletion with subsequent oligomerization of the STIM1 ER-luminal domain, followed by its redistribution towards the plasma membrane to gate ORAI1 channels. The mechanistic underpinnings of this inside-out Ca(2+) signalling were largely undefined. By taking advantage of a unique gain-of-function mutation within the STIM1 transmembrane domain (STIM1-TM), here we show that local rearrangement, rather than alteration in the oligomeric state of STIM1-TM, prompts conformational changes in the cytosolic juxtamembrane coiled-coil region. Importantly, we further identify critical residues within the cytoplasmic domain of STIM1 (STIM1-CT) that entail autoinhibition. On the basis of these findings, we propose a model in which STIM1-TM reorganization switches STIM1-CT into an extended conformation, thereby projecting the ORAI-activating domain to gate ORAI1 channels

    In-situ investigation of graphene oxide under UV irradiation: Evolution of work function

    No full text
    Using in-situ Kelvin probe force microscopy (KPFM) to measure surface potential, we investigated the time-dependent work function evolution of solution-processed graphene oxide (GO) under ultraviolet (UV) irradiation. We found that the work function of GO exposed in UV shows a notable decrease with increasing irradiation time, which is proposed to be attributed to the gradual disappearance of oxygen-containing functional groups in GO during the UV-induced reduction reaction process. Fourier transform infrared spectrum and Raman spectrum were used to confirm the reduction of GO under UV irradiation. Our study would give an insight into understanding the transformation of GO’s electronic structures during the reduction process

    Controllable epitaxial growth of MoSe2-MoS2 lateral heterostructures with tunable electrostatic properties

    No full text
    Recently, two-dimensional (2D) transition-metal dichalcogenides (TMDCs) have attracted much attention due to their promising applications in the fields of electronics and optoelectronics. Controllable growth of TMDC heterostructures stimulates new interest by tuning their optical and electronic properties. Herein, large-scale lateral MoSe2–MoS2 and MoSe2(1−x)S2x –MoS2 heterostructures have been synthesized through one-step epitaxial ambient-pressure chemical vapor deposition method and we found that the growth time plays an important role in the formation of lateral heterostructures. Lateral MoSe2–MoS2 heterostructures have been systematically characterized by using atomic force microscopy, Raman spectroscopy and photoluminescence spectroscopy. Corresponding surface potential and charge distributions of MoSe2–MoS2 heterostructures have been investigated by employing Kelvin probe force microscopy. We found that the electrostatic properties of MoSe2–MoS2 heterostructures can be effectively tuned by injecting charges through conductive atomic force microscopy. Our results pave a new route for constructing 2D lateral heterostructures toward electronic and optoelectronic applications

    PREPARATION OF ULTRASONIC-ASSISTED HIGH CARBOXYLATE CONTENT CELLULOSE NANOCRYSTALS BY TEMPO OXIDATION

    No full text
    Cotton linter pulp was oxidized in the TEMPO-NaBr-NaClO system with ultrasonic treatment, and cellulose nanocrystals having high carboxylate content were produced directly. Results showed that the C6 primary hydroxyl group of cellulose fiber was converted to the carboxylate group, whose amount could be up to 1.66 mmol/g. During the oxidizing reaction, some of the amorphous region in the cellulose fiber was modified and gradually hydrolyzed, but the crystalline region still remained. It was also shown by TEM (Transmission electron microscopy) that the widths of cellulose nanocrystals were approximately 5-10 nm, and the lengths were approximately 100-400 nm. The high carboxylate content cellulose nanocrystals could be produced in one step by this method, yielding a stable and well dispersed aqueous suspension

    Effect of <i>Aspergillus niger</i> Fermentation on the Metabolites in Corn Stalks

    No full text
    Fermentation has been considered as an effective means to improve the feed nutrient digestibility of corn stalks, and it is beneficial to animal growth performance and health. The beneficial functions of fermented corn stalks are related to the variety of metabolites produced through fermentation, but the nature of these components is still unclear. In this study, gas chromatography–mass spectrometry, combined with principal component analysis and partial least squares discriminant analysis, was used to explore the differential metabolites of corn stalks before and after Aspergillus niger fermentation. A total of 32 potential characteristic compounds were obtained, mainly including sugar and glycoside derivatives, organic acids and their derivatives, alcohol compounds, benzene and its substituted derivatives, amino acids, phenolic compounds, and flavonoids. Compared with the metabolites in corn straw before fermentation, the relative content of D-threitol, mannitol-1-phosphate, coniferin, citrazinic, oxoglutaric acid, chenodeoxycholic acid, naproxen, 5-aminovaleric acid, vanillin, catechin, and UDP-glucuronic acid was significantly increased, and the relative content of N-acetylgalactosamine, heneicosanoic acid, chlorogenic acid, and adenosine was significantly decreased. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that 20 metabolic pathways corresponded to the differential characteristic metabolites. The results of this study will provide theoretical support for the quality evaluation of fermented corn stalks and high-value product development in the future

    Electrostatic properties of two-dimensional WSe2 nanostructures

    No full text
    Recently, two-dimensional transition metal dichalcogenides have intrigued much attention due to their promising applications in optoelectronics. The electrostatic property investigation of WSe2 nanostructures is essential for device application. Here, the interlayer screening effects of WSe2 nanoplates with different thicknesses were investigated by measuring surface potential employing Kelvin probe force microscopy. Simultaneously, charges can be injected into WSe2 nanoplate by means of conducting atomic force microscopy to tune the electrostatic properties of WSe2 nanostructures. Our experimental results have some important implications for improving performance of WSe2-based optoelectronic devices through interface or surface engineering. © 2016 AIP Publishing LLC

    Controlled growth of atomically thin MoSe2 films and nanoribbons by chemical vapor deposition

    No full text
    Atomically thin transition metal dichalcogenides (TMDCs) have drawn much interest for their promising applications in electronic, optoelectronic, valleytronic and sensing fields. Controlled growth of large-scale and high-quality TMDC nanostructures is highly desirable but remains challenging. In the present work, large-scale monolayer, bilayer and few-layer MoSe2 films have been controllably synthesized by ambient pressure chemical vapor deposition (APCVD). Hydrogen flow rate, growth temperature as well as selenium–metal flux ratio have been systematically investigated, which were demonstrated to play a key role in the synthesis of MoSe2 nanostructures. We have also reported the successful growth of MoSe2 nanoribbons with controlled width and length on diverse substrates by APCVD with the assistance of sodium chloride and corresponding growth mechanism was proposed. Our findings highlight the prospects for the controlled growth of novel 1D and 2D TMDC nanostructures for nanoelectronic devices and the development of mixed-dimensional heterostructures
    corecore