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Background: According to GLOBOCAN 2020, lymphoma ranked as the 9th most

common cancer and the 12th leading cause of cancer-related deaths worldwide.

Traditional diagnostic methods rely on the invasive excisional lymph node biopsy,

which is an invasive approach with some limitations. Most lymphoma patients are

diagnosed at an advanced stage since they are asymptomatic at the beginning,

which has significantly impacted treatment efficacy and prognosis of the disease.

Method: This study assessed the performance and utility of a newly developed

blood-based assay (SeekInCare) for lymphoma early detection. SeekInCare

utilized protein tumor markers and a comprehensive set of cancer-associated

genomic features, including copy number aberration (CNA), fragment size (FS),

end motif, and lymphoma-related virus, which were profiled by shallow WGS

of cfDNA.

Results: Protein marker CA125 could be used for lymphoma detection

independent of gender, and the sensitivity was 27.8% at specificity of 98.0%.

After integrating these multi-dimensional features, 77.8% sensitivity was achieved

at specificity of 98.0%, while its NPV and PPV were both more than 92% for

lymphoma detection. The sensitivity of early-stage (I-II) lymphoma was up to

51.3% (47.4% and 55.0% for stage I and II respectively). After 2 cycles of treatment,

the molecular response of SeekInCare was correlated with the clinical outcome.

Conclusion: In summary, a blood-based assay can be an alternative to detect

lymphoma with adequate performance. This approach becomes particularly

valuable in cases where obtaining tissue biopsy is difficult to obtain

or inconclusive.
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1 Introduction

Lymphoma is a type of common cancer worldwide, including a

large group of lymphoid hematopoietic malignancies, which can be

further classified as Non-Hodgkin lymphoma (NHL) and Hodgkin

lymphoma (HL) two major types (1). Lymphoma was the ninth

most common cancer and the 12th leading cause of cancer death

according to GLOBOCAN 2020 (2). As counted in 2016, the

incidence and mortality of lymphoma were 6.5 and 3.73 per

100,000, respectively, and lymphoma is considered as one of the

top three cancer incidences in children for boys in China (3).

Lymphoma is a diverse group of malignancies that originated from

B, T, and NK cells, which includes more than 30 unique subtypes (4,

5). Currently, diagnosis and classification of lymphoma was mainly

based on excisional or punctured tissues by immunohistochemistry

and in situ hybridization (4, 6, 7). However, the invasive operation

has significant limitations, including potential procedural risks and

inter- and intra-tumor heterogeneity (8–10). Especially for patients

with lesions that are difficult to reach (e.g., those in brain; deep

lymph nodes in the thoracic cavity or abdomen).

In the past few years, an emerging technique named liquid biopsy

could potentially improve these limitations. Analysis of circulating

cell-free DNA (cfDNA) is the leading non-invasive liquid biopsy

approach and has been extensively utilized for cancer early diagnosis

(11–13), through capturing early cancer signals from circulating

tumor DNA (ctDNA). Although the majority of cfDNA was often

not of cancerous origin, technical advances in next-generation

sequencing (NGS), together with advanced computational methods,

allowing for identifying tumor specific alterations or features, such as

single nucleotide variations (11, 14), copy number aberrations (CNA)

(15–19) and fragment-omics (16, 20–22), and epigenetic changes (23–

28). With regard to lymphoma, liquid biopsy has been used for

classification of lymphoma subtype, assessment of tumor burden as a

prognostic biomarker, and detection of molecular response to therapy

(29–31). All of them were based on the PCR or NGS target region

assays to detect lymphoma specific mutations. Most lymphoma

patients did not have hotspot mutations, and most mutations

detected from cfDNA came from hematopoietic stem cells and

accumulated over time, which resulted in false positive prediction.

However, CNAs were rarely detected in healthy individuals.

Here, we have developed a blood-based multi-omics assay

(named SeekInCare) (18). It utilized traditional protein tumor

markers (PTMs) and cancer genomic hallmarks including CNA,

fragment size (FS), end motif, and cancer-related virus which were

evaluated by shallow whole-genome sequencing with the aim to

calculate the cancer risk score (CRS). SeekInCare making full use of

the common cancer genomic features, CNA, FS, end motif, and a

panel of seven protein markers, is not limited to a particular cancer

type and has been reported in several cancers (16, 20–22).

Therefore, it could be applied to a broad pan-cancer mode to

detect multiple cancer types simultaneously. It showed good

performance in hepatocellular carcinoma (HCC) (75.0%

sensitivity was achieved at 98.0% specificity) (22). Here we

presented its utility in another cancer type, lymphoma. This study

aimed to assess the potential for broad clinical utility of SeekInCare

for lymphoma detection across diverse lymphoma subtypes.
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2 Materials and methods

2.1 Sample collection

A total of 144 newly diagnosed and treatment-naïve lymphoma

patients from two hospitals, The First Affiliated Hospital of

Zhengzhou University and Sun Yat-sen University Cancer Center,

were enrolled in this study from March 2021 to February 2022.

Diagnosis and classification weremade according to the 2016 revision

of the World Health Organization classification of lymphoid

neoplasms (5). 396 healthy individuals without any history of

cancer or other cancer related clinical symptoms were enrolled as a

control group. 99 healthy individuals from the physical examination

center of the Second Affiliated Hospital of Sun Yat-sen University,

with the remaining samples collected from our employees and their

families. The study protocol was approved by the ethics committee of

leading site: The First Affiliated Hospital of Zhengzhou University

(2022-KY-0719-001). All participants provided written informed

consent upon enrollment. One tube of blood (Streck, La Vista,

USA) was collected from each participant after enrollment.

cfDNA extraction from blood, library construction, and

sequencing process were described in a previous study by Meng

et al, 2021 (22). In brief, cfDNA was extracted from plasma through

the QIAampCirculating Nucleic Acid Kit (Qiagen, Hilden, Germany).

cfDNA was subject to library construction using the Kapa Hyper Prep

Kit (Kapa Biosystems, Wilmington, MA) according to the

manufacturer’s protocol. Prepared libraries were sequenced on

NovaSeq system (Illumina, San Diego, CA), with pair-end 150 bp

for WGS to generate approximately 10 Gb of raw sequencing data.
2.2 Protein tumor marker quantification

500 mL of plasma was used to quantify the expression of seven

common protein tumor markers (AFP, CA125, CA15-3, CA19-9,

CA72-4, CEA, and CYFRA21-1) by using Roche cobas e411 analyzer

(Roche Diagnostics GmbH, Mannheim, Germany) and commercially

available reagent kits following manufacturer’s instructions.
2.3 Sequence alignment and CNA analysis

The sequence alignment and CNA analysis were described in

Meng et al, 2021 (22). In brief, human genome was divided into

non-overlapping 1-Mb bins, using the reads number of each bin

from healthy samples to calculate the mean value and standard

deviation. Next, calculate the Z-score of each bin by subtracting the

mean value and dividing by the standard deviation. Bins with an

absolute Z-score greater than 3 were classified as CNA bins and

samples with more than 10 such bins were deemed CNA positive.

In order to depict the significantly recurrent amplification/deletion

regions in patients across different lymphoma subtypes, we divided the

reads number of each bin by the mean value of corresponding bin, and

performed log2-transformation (named log R ratio), which was used

as input for QDNAseq (v1.22.0) package to detect CNA segments.

Patients’ CNA segments were used to detect recurrent CNA

amplification/deletion regions through GISTIC2.0 software (32).
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2.4 FS analysis

Read pairs with a MAPQ score below 30 for either read or PCR

duplicates were removed. Then calculate the length of each cfDNA

fragment. The short fragments ratio (defined as P150) was the

proportion of DNA fragments within 50~150bp. The ratio

difference (named FS.S-L) between short and long (180~220bp)

fragments was calculated as follows:

FS : S – L =
# of short reads (50 ∼ 150bp)

#   of   total   reads
 

−  
#   of   long   reads   (180 ∼ 220bp)

#   of   total   reads
2.5 End motif analysis

The first 4-nucleotide sequence of each 5′ fragment end

(Watson and Crick strands) was extracted from the mapping

results and defined as end motif (16, 33, 34). Then Wilcoxon

rank-sum test was used to detect the significantly different

frequency of each end motif between lymphoma patients and

healthy individuals, and use of false discovery rate (FDR) method
Frontiers in Oncology 03
to adjust for multiple testing. End motif with adjustment q-value

less than 0.001 was selected to build a classifier to differentiate the

lymphoma patients from the healthy subjects. To minimize the

issue of overfitting and reduce the number of end motifs, least

absolute shrinkage and selection operator regression (LASSO)

method was applied to do the feature selection first. The selecting

features were initially standardized, centering the data around a

mean of zero and a standard deviation of one. This process was

repeated 30 times and end motifs retained in all the repetitions were

selected, which would be used to build the lymphoma predictive

model by support vector machine (SVM). The average predicted

value from multiple SVM models was used for further analysis.
2.6 EBV viral reads fraction calculation

Un-mapped reads were extracted from human mapping results.

These reads were mapped to the Epstein–Barr virus (EBV) genome

(AJ507799.2) with bowtie2 version 2.4.1 (http://bowtie-

bio.sourceforge.net/index.shtml). After filtering the reads with

mapping MAPQ score less than 30, the fraction of EBV reads per

megabase was calculated as the following formula.
B C

A

FIGURE 1

Expression level of protein tumor markers between lymphoma and healthy group. (A) Boxplot plots of seven protein tumor markers (AFP, CA125,
CA15-3, CA19-9, CA72-4, CEA, and CYFRA21-1) expression in lymphoma patients and healthy individuals. Statistical significance of the increasing
trend of lymphoma patients was evaluated by the Wilcoxon rank-sum test. (B) The receiver operating characteristic (ROC) curve of each protein
tumor marker showed the performance for lymphoma prediction. (C) Violin plots showed the expression of CA125 in healthy individuals and
different lymphoma subtypes. The dotted line indicated the CA125 clinical cut-off value of 35 U/ml. HL, Hodgkin lymphoma; T/NK, T/NK cell
lymphoma; Indolent, indolent B-cell lymphoma; DLBCL, diffuse large B-cell lymphoma; ns, not significant; ***, p< 0.001 (Wilcoxon rank-sum test).
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EBV   viral   read   fraction =
#   of   reads  mapped   to   EBV

#   of   total   reads
 �   106
2.7 Integrating multi-omics and
multidimensional features to calculate
cancer risk score

Through SeekInCare assay (Supplementary Figure 1), genomic

features CNA, FS, end motif, and EBV value were analyzed by the

sWGS data. Additionally, the protein tumor marker CA125 was

incorporated as a feature. Feature selection was performed using

LASSO followed by the construction of the lymphoma classifier

model (35, 36). Before constructing the model, the five-dimensional

features were initially normalized by subtracting the mean and

dividing by the standard deviation.The sample set was randomly

stratified in a 4:1 ratio into a training and validation set, then built

the lymphoma classifier model with 10-fold cross-validation in the

training set. This process was repeated 100 times. The average

prediction value from these models was defined as CRS. If an

individual’s CRS surpassed the average prediction value

corresponding to a specificity of 98.0%, they would be categorized

as having lymphoma
2.8 Statistical methods

The sample size for our study was determined using the

Buderer’s method (37), aiming for a sensitivity of 75% at a

specificity of 98% with a 95% confidence level and a case-to-

control ratio of 1:2. The calculated values for n1 and n2 were 219

and 28, respectively, and the larger value was selected, resulting in a

sample size of 219. Considering a 5% dropout rate, the final sample

size was set at 231. Notably, we were able to surpass this

requirement by collecting a total of 540 samples for our study.

This larger sample size not only meets the study’s statistical power

needs but also contributes to heightened result reliability.

All statistical analyses were performed using R statistical

software (version 4.1.2), which was described in a previous study

by Meng et al, 2021 (22).
3 Results

3.1 Characteristics of enrolled participants

We prospectively enrolled 144 treatment-naïve lymphoma

patients and 396 healthy individuals in this study. The mean ages

were 51.2 years in the lymphoma group and 46.9 years in the

healthy group (p< 0.01, Table 1). Sub-classification of lymphoma

patients was summarized in Table 1 (Table 1). There was no

significant difference between the two groups in gender (p =

0.144). As for lymphoma classification, except for 14 HL patients,

130 (90.3%) lymphoma patients were non-Hodgkin lymphoma

(NHL), 76.2% of which originated from B cells and 23.8% from

T/NK cells. Among B-cell NHLs, 79.8% were aggressive types,
Frontiers in Oncology 04
including diffuse large B-cell lymphoma (DLBCL), accounting for

82.3% of the total subgroup. The detailed information of each

sample was shown in Supplementary Table 1.
3.2 Protein tumor markers for
lymphoma diagnosis

Protein tumor markers have been used for decades to aid in the

diagnosis and management of a variety of cancers. Here, seven

common plasma protein tumor markers (AFP, CA125, CA15-3,

CA19-9, CA72-4, CEA, and CYFRA21-1) were selected to estimate

the expression in each lymphoma patient and healthy individual

(18). As shown in Figure 1A, only the expression of CA125 and

CA153 in lymphoma was significantly higher than that in the

healthy group (Wilcoxon rank-sum test, P<0.001). However,

using receiver operating characteristic (ROC) analysis to evaluate

these proteins’ performance in differentiating lymphoma from

healthy subjects (Figure 1B), only CA125 achieved a moderate

AUC (area under the curve) of 0.702. Based on the clinical cut-off

value: 35 U/ml, CA125 positive ratio was only 2.3% in healthy

individuals and 27.8% in lymphoma patients (24.7% in male and

31.3% in female lymphoma respectively) (Supplementary Table 2),

which indicated CA125 could be used as a biomarker for lymphoma

detection, regardless of gender. As for the different subtypes of

lymphoma, CA125 positive ratio was 42.9% in HL. In NHL, CA125

positive proportion of indolent B-cell lymphoma was 40.0%, which

was higher than aggressive B-cell lymphoma (26.6%). The positive

ratio for T/NK cell lymphoma was the least at 16.1% (Figure 1C).
3.3 Distinct CNA patterns across diverse
lymphoma subtypes

Since somatic CNA has been widely detected in most cancer

patients, sWGS was used to depict the CNA profile of lymphoma

patients and healthy subjects. 88 (61.1%) patients were CNA

positive, however only 5 (1.3%) healthy subjects were CNA

positive, which suggested that CNA might be an efficient feature

for lymphoma diagnosis with high specificity of 98.7%

(Supplementary Figure 2A). Especially for HL, 85.7% of patients

were CNA positive. Aggressive B-cell NHL patients had the second

highest CNA mutational frequency. Among them, DLBCL and

Non-DLBCL had similar CNA mutational frequency (64.6% vs

71.4%). The CNA positive ratio was lowest in T/NK-cell

NHL (41.9%).

Segmented CNA profiles of each lymphoma patient was shown

in Supplementary Figure 2B. The heatmap showed that aggressive

B-cell lymphoma (including DLBCL and non-DLBCL) had a

significantly higher absolute value of log R ratio of CNA

segments than the other subtypes, which meant aggressive B-cell

patients had a higher concentration of ctDNA in plasma.GISTIC

analysis was used to find the significant recurrent CNA peaks in

lymphoma and the genomic region mutational frequency across

different lymphoma subtypes. In all the patients, significant

mutational focal deletion peaks (1p36.32, 3p21.31, 4q21.3, 4q35.2,
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6q23.3, 6q26, 8p23.3, and 15q12) and broad amplification regions

(1q, 3p, 3q, 5p, 5q, 7p, 7q, 9p, 12p, 12q, 18q, 19q, and 21q) were

identified (Figure 2A, Supplementary Table 3). The CNA

mutational pattern of each lymphoma subtype with depicted in

Figure 2B. Among HL patients, chromosomal gains most frequently

involved 2p, 9, 14, and 19, whereas losses primarily affected

chromosomes 1p, 4q, and 13q. Amplification of 1q, 3, 7, 11q, 12,

18q and deletion of 1p, 6q, 8p, and 15p was frequently mutated in

the DLBCL, which was similar to the Non-DLBCL CNAmutational
Frontiers in Oncology 05
frequency. T/NK-cell NHL did not have frequent mutational

regions, except for amplification of 1q and 5. CNA pattern

differences among these major subtypes might contribute to

identifying the lymphoma subtypes.
3.4 Characterizing aberrant fragment size
distribution of cfDNA in lymphoma patients

It is well known that cfDNA from cancer patients had

significantly more short fragments than that from healthy

individuals, which could be used for cancer prediction (21).

However, there are few published studies about the FS profile in

lymphoma. In this study, the fragment size distribution in both

lymphoma and healthy individuals was shown in Figure 3A. Similar

to the FS distribution of solid tumors, lymphoma patients had a

higher proportion of short fragments (50~150 bp, P150) than

healthy subjects and the same profile of 10-periodic peaks (21,

22). Meanwhile, the proportion of long fragments (180~220 bp) in

lymphoma patients was lower than that in healthy control. Based on

these results, we developed a new index of FS (named FS.S-L,

Materials and Methods), which had a high correlation with the

previous FS method P150 (Pearson: 0.985) and had a better

performance for cancer prediction. At the same specificity of

98.0%, FS.S-L predicted 6.9% more lymphoma patients than the

P150 (Figure 3B), and FS.S-L index (AUC = 0.837) also has a

significantly better performance (p< 0.0001 by DeLong’s test) to

discriminate lymphoma and healthy individual than P150 (AUC =

0.800) (Figure 3C). The value of FS.S-L in each lymphoma subtype

was also significantly higher than that in healthy individuals by the

Wilcoxon rank-sum test (p< 0.001) (Figure 3D), which suggested

that FS.S-L was suitable for all the lymphoma detection, regardless

of subtypes.
3.5 Differential end motif proportions
between lymphoma patients and
healthy individuals

The cfDNA end motif was identified using the first 4bp

sequence on each 5′ end of cfDNA fragment after alignment to

the reference genome (Figure 4A). 189 out of 256 end motifs with a

different frequency between lymphoma patients and healthy

individuals were found by the Wilcoxon rank-sum test and p-

value adjust method (FDR). For example, the frequency of motif

ATAG showed a significant increase in lymphoma patients, while

the frequency of motif CGAG was significantly lower in lymphoma

patients (Figure 4B, Materials and Methods). To minimize the issue

of overfitting, LASSO was used to select the end motifs and reduce

the number of features. Finally, 24 end motifs were retained in the

feature selection process by LASSO after repeating 30 times.

Hierarchical clustering analysis was used to identify the different

characteristics of selected end motifs between the cancer patients
TABLE 1 Demographics and clinical information of lymphoma patients
and healthy individuals.

Lymphoma Healthy
p value*

(n = 144) (n = 396)

Age(mean ± SD) 51.2 ± 16.4 46.9 ± 13.1 0.005

<45 49 (34.0%) 160 (40.4%)

<0.001
45~55 26 (18.1%) 118 (29.8%)

55~65 37 (25.7%) 78 (19.7%)

>65 32 (22.2%) 40 (10.1%)

Gender

F 67 (46.5%) 214 (54.0%)
0.144

M 77 (53.5%) 182 (46.0%)

Stage

I 19 (13.2%)

II 20 (13.9%)

III 15 (10.4%)

IV 65 (45.1%)

NA 25 (17.4%)

Major subtype

HL 14 (9.7%)

NHL 130 (90.3%)

NHL Cell Origin

T/NK-cell 31 (23.8%)

B-cell 99 (76.2%)

B-cell NHL aggressive or not

No (Indolent) 20 (20.2%)

Yes (Aggressive) 79 (79.8%)

DLBCL or not in aggressive B-cell NHL group

No 14 (17.7%)

Yes 65 (82.3%)
Values are n (%).
*Student’s t-test was used to compare mean age difference between healthy and lymphoma,
and Fisher’s exact test was used to estimate the difference of age and gender compositions
between those two groups; SD, standard deviation; HL, Hodgkin lymphoma; NHL Non-
Hodgkin lymphoma.
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and healthy controls (Figure 4C). Heatmap formed different

clusters between lymphoma patients and healthy subjects and

showed that the frequency of selected end motifs in lymphoma

patients was quite distinct from that in healthy individuals. Use the

frequency of selected end motifs to build the lymphoma predictive

model by SVM, and the predicted score of healthy subjects and

lymphoma patients across different subtypes was shown in

Figure 4D. All the lymphoma subtypes had a significantly higher

predicted score than healthy controls.
3.6 Quantitative detection of EBV by
the sWGS

In addition to the lymphoma specific ctDNA genomic feature,

quantification of circulating EBV DNA was useful for diagnosis,

monitoring, and prognostication of lymphoma, especially for HL

and T/NK-cell NHL patients (38–40). Based on the sWGS data, the

proportions of circulating EBV reads in lymphoma patients and

healthy individuals were shown in Supplementary Figure 3. 42.9%

HLs and 54.8% T/NK-cell NHLs were EBV positive, with more than

0.5 reads per million. However, the plasma EBV proportions of all

healthy individuals were far less than 0.5 reads/M and the

maximum was 0.16 reads/M. EBV status of other lymphoma

subtypes (Indolent, DLBCL, and non-DLBCL) was similar to that

of healthy subjects. 21 lymphoma patients also accepted EBV

detection by real-time PCR in blood samples and in situ
Frontiers in Oncology 06
hybridization in tissue samples. 5 patients with EBV negative in

tissue were also negative in blood, regardless of method. 15 out of 16

patients (93.8%) with EBV positive in tissue were also EBV positive

detected by sWGS in blood, but only 5 patients (31.3%) were

detected by the real-t ime PCR method in the blood

(Supplementary Table 4). These findings suggested that our assay

was more sensitive for EBV detection in blood than the real-time

PCR method, which could be used for lymphoma detection.
3.7 The blood-based multidimensional
assay achieved optimal accuracy in
lymphoma detection

Based on the sample source, samples were divided into training

cohort and validation cohort. 45 patients and 99 healthy individuals

were enrolled from different affiliated hospitals of Sun Yat-sen

University were used as independent validation cohort, the

remaining samples were used as training cohort to build the

lymphoma classifier model, which achieved AUC of 0.937.

SeekInCare performance in the validation cohort mirrored that of

the training cohort, with an AUC of 0.964 (Delong’s test p = 0.3,

Figure 5A), affirming its generalizability. Therefore, we

amalgamated all samples for further assessment of each feature’s

independent performance in distinguishing lymphoma patients

from healthy individuals via ROC analysis and calculated the CRS

value. CNA made the largest contribution to the model, which was
B

A

FIGURE 2

Landscape of genomic CNA detection in ctDNA from lymphoma patients. Chromosomal overview of focal recurrent amplification (upper) and
deletion (lower) regions was shown in (A), and the G-score was calculated by the GISTIC analysis. The blue region represented the significant focal
deletion region (q-value = 0.25) with the annotated position. Fractions of aberrant samples across genomic loci and different lymphoma subtypes
were shown in panel (B) HL, Hodgkin lymphoma; T/NK, T/NK cell lymphoma; Indolent, indolent B-cell lymphoma; DLBCL, diffuse large B-
cell lymphoma.
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the highest sensitivity of all the five variables at specificity of 98.0%

followed by the FS, end motif, EBV and CA125 (Figure 5B). Pearson

correlation among these five features was shown in Supplementary

Figure 4A. Apart from a correlation of 0.57 between CNA and FS.S-

L, and a correlation of 0.55 between FS.S-L and the end motif, there

was no correlation among the other features, CA125, end motif, and

EBV. SeekInCare detected 112 out of 144 lymphoma patients

[77.8% (95% CI, 70.1%~84.3%)] at 98.0% specificity (95% CI,

96.1%~99.1%) (Supplementary Table 5), and the overall accuracy

is 92.6% (95% CI, 90.0%~94.7%). Both the positive predictive value

(PPV) and negative predictive value (NPV) were more than 92%.

Meanwhile, the AUC of CRS was 0.947 (Figure 5B) and the AUC of

precision-recall curve was 0.920 (Supplementary Figure 4B). The

sensitivity of lymphoma detection was increased with the

advancement of stages. While the sensitivity of early stage was

51.3% (47.4% (95% CI, 24.4%~71.1%) and 55.0% (95% CI, 31.5%

~76.9%) for stage I and II respectively), and the sensitivity of

advanced stage was 90.0% (stage III: 86.7% (95% CI, 59.5%

~98.3%); Stage IV: 92.3% (95% CI, 83.0%~97.5%)), with high

specificity of 98.0% (Figure 5C). Among lymphoma subtypes, all

the HL patients were successfully detected, including 33.3% of early

stage HLs. For the aggressive B cell lymphoma, including both

DLBCL and non-DLBCL with a sensitivity of 72.3% (95% CI, 59.8%

~82.7%) and 85.7% (95% CI, 57.2%~98.2%), respectively

(Figure 5D). These results suggested that SeekInCare was an
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efficient non-invasive assay for lymphoma detection with

high accuracy.
3.8 Dynamic changes of blood-based assay
correlate with treatment outcome

We explored the CRS dynamic changes after lymphoma related

treatment. Blood samples were collected from three patients with

stage IV lymphoma prior to treatment and after completing two

treatment cycles. Notably, the amplitude of CNAs in patient

ZL0019, exhibited a significant increase in regions such as 1q, 9p,

and X (Figure 6A). In contrast, CNAs that were initially detected in

the samples from patients ZL0020 and ZL0060 prior to treatment

had disappeared, with no further detection of CNAs in their plasma

after treatment. Concurrently, the other dimensions, including

FS.S-L, CA125, end motif, and EBV, exhibited the changes

consistent with the observed changes of CNAs. Specifically, The

value of these dimensions increased in ZL0019 post-treatment,

while they decreased to normal levels in ZL0020 and ZL0060,

except EBV in ZL0020 and FS.S-L in ZL0019 remained negative

(Supplementary Figure 5). Furthermore, our analysis revealed that

CRS of ZL0019, as predicted by GLM, approached more closely to 1

after treatment (from its pre-treatment value of 0.9979 to 0.9995).

Although several individual dimensions exhibited a noteworthy
B

C D

A

FIGURE 3

cfDNA fragment size distribution differentiated between lymphoma patients and healthy subjects. (A) The fragment size distribution of cfDNA was
determined by sWGS of plasma samples from lymphoma patients and healthy subjects. The black dotted line showed the range of short fragments
(50~150bp) and long fragments (180bp~220bp). The grey dotted line showed the location of 10-periodic peaks (81bp, 92bp, 102bp, 112bp, 122bp,
133bp, and 142bp). The correlation between the proportion of short fragments (defined P150) and the proportion difference between short and long
fragments (defined FS.S-L) was shown in (B) The dotted line represented the cut-off value at 98% quantiles in the healthy group. (C) ROC curve of
P150 and FS.S-L showed the performance for lymphoma prediction. DeLong’s test was used to show that the AUC of FS.S-L (blue) was significantly
better than the AUC of P150 (red) with p< 0.0001. (D) Compare the value of FS.S-L between healthy individuals and different lymphoma subtypes.
Statistical significance of the increasing trend of P150 for each lymphoma subtype was determined by the Wilcoxon rank-sum test (***p< 0.001). HL,
Hodgkin lymphoma; T/NK, T/NK cell lymphoma; Indolent, indolent B-cell lymphoma; DLBCL, diffuse large B-cell lymphoma.
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increase in ZL0019, the nature of the sigmoid curve within the GLM

model posed a challenge in precisely quantifying this change

(Figure 6B). Additionally, the CRS values for ZL0020 and ZL0060

decreased to the normal level.

Remarkably, after two treatment cycles, all three patients

exhibited a Partial Response (PR) according to image evaluations.

However, after four cycles, ZL0019 progressed to Progressive

Disease (PD), while ZL0060 achieved a Complete Response (CR),

and ZL0020 also reached CR after six treatment cycles (Figure 6C).

These findings illustrated the potential of liquid biopsy in promptly

assessing the effectiveness of cancer treatment, as they align with

clinical evaluations following two treatment cycles.
4 Discussion

Lymphomas, encompassing diverse neoplasms arising from B

lymphocytes, T lymphocytes, and NK cells, are characteristic

tumors surrounded by an inflammatory microenvironment.

Among them, DLBCL constitutes a major portion of NHLs,

displaying high clinical and biological heterogeneity because it

arises from germinal center B cells at different stages of

differentiation (41). Its classification is intricate, constantly

evolving due to heterogenic variations in morphology, phenotype,

genetic anomalies, prognosis, and clinical features (42). The tumor

microenvironment (TME) is a complex composed environment

enveloping cancer cells, comprising both cellular and extracellular

elements, as well as a vascular network (43, 44). TME components
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play pivotal roles in both initiating and sustaining carcinogenesis

(45). The composition of TME cells holds relevance for the

prognosis of B-cell lymphomas, including cHL, DLBCL and FL

(46). It plays a pivotal role in various biological processes such as

pathogenesis, progression, metastasis and drug resistance,

facilitating sustained proliferation and immune escape (47, 48).

Tumor progression is profoundly shaped by the TME. Via various

pathways, tumor cells adeptly recruit stromal cells, providing tumor

cell growth signals, intermediate metabolites, and a conducive

environment for tumor progression and metastasis (49).

Angiogenic factors, like vascular endothelial growth factor and its

receptors, along with other TME components, are crucial in the

progression and maintenance of lymphoproliferative disorders (50).

Increased interfollicular microvascular density in FL patients

predicts inferior overall survival and an increased transformation

to DLBCL (51, 52). Antiangiogenic therapy has emerged as a vital

tool for lymphoma treatment (53). In the bone marrow

microenvironment, interactions with stromal cells and the

extracellular matrix contribute to cell adhesion-mediated drug

resistance, impacting chemotherapy efficiency and prognosis in B-

NHL (54). Knockdown of small glutamine-rich TPR-containing

protein A (SGTA) in Non-Hodgkin’s Lymphomas induced CAM-

DR, offering the potential for a novel therapeutic approach for

CAM-DR in NHL (55).

Lymphoma is often diagnosed at an advanced stage when it has

caused symptoms, and the diagnosis and classification are mainly

based on the excisional or punctured tissues. It has been challenging

to develop a more sensitive and specific method of detecting
B

C D

A

FIGURE 4

Differential end motif profiles between lymphoma patients and healthy individuals. (A) illustrated the determination of plasma DNA end motifs. After
aligning the pair-end reads to the reference genome, the first 4-nucleotide sequence on each 5′ fragment end (Watson and Crick strands) of one
fragment DNA was defined as end motif. As shown in the example, CGAC and TTGT was the example of end motifs. One sample included a total of
256 4-mer motifs. (B) Boxplot showed two examples of the frequency difference of selected end motifs between lymphoma subjects and healthy
individuals. (C) Heatmap analyzed the frequencies of 24 selected end motifs between healthy and lymphoma subjects, and samples were clustered
based on the frequency of selected end motifs. The data are row normalized. (D) Violin plot showed the lymphoma predicted score by support
vector machine. HL, Hodgkin lymphoma; T/NK, T/NK cell lymphoma; Indolent, indolent B-cell lymphoma; DLBCL, diffuse large B-cell lymphoma.
***, Wilcoxon rank-sum test P-value< 0.001.
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lymphoma when it was still asymptomatic. With the advance of

‘liquid biopsy’ and next-generation sequencing technology, we

developed a blood-based non-invasive assay, SeekInCare, which

integrated the protein marker and multidimensional cancer
Frontiers in Oncology 09
genomic features, such as CNA, FS, end motif, and oncogenic

viral DNA. In this study, the SeekInCare assay has achieved an

impressive 77.8% sensitivity with the high specificity of 98.0%, and

92.6% accuracy, while its NPV and PPV were both more than 92%
B

C

A

FIGURE 6

Molecular response assessment of serial plasma samples. (A) Dynamics of the CNA profile before treatment (brown) and after 2 treatment cycles
(baby blue). The red dotted line represented the cutoff value of the log R ratio for CNA ( ± 0.05). The CRS values before treatment and after 2
treatment cycles are shown in (B) The red dotted line represents the cut-off value of CRS at 98% specificity. A CRS value exceeding this cutoff is
defined as ‘ctDNA detected,’ while a value below is categorized as ‘ctDNA not detected’. Molecular and imaging responses are illustrated in (C).
B

C D

A

FIGURE 5

Performance of SeekInCare assay in lymphoma prediction. (A) Performance comparison of SeekInCare assay in the training cohort and validation
cohort. (Delong’s test p = 0.3). (B) ROC analysis comparing different dimensions in classification of lymphoma patients (n = 144) from healthy
individuals (n = 396) by CA125, CNA, FS, EBV, end motif, and the integrating value named CRS. Sensitivities at 98.0% specificity across different tumor
stages and lymphoma subtypes were shown in (C, D) respectively. The error bar indicated the range of 95% confidence interval.
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for lymphoma detection. The assay also performed well in detection

of early stage lymphoma as the sensitivity of early stage was 51.3%

(47.4% and 55.0% for stage I and II respectively).

CA125 is used to monitor certain cancers during and after

treatment, especially ovarian cancer in symptomatic women

presenting to primary care (56). Interestingly, among 7

commonly used plasma protein tumor markers for cancer, we

found that only CA125 could be effectively used for lymphoma

detection. It is especially effective in HL with a sensitivity of 42.9%

and high specificity of 98.0%, compared to a moderate sensitivity of

27.8% at the same specificity for all the lymphoma patients in this

study. Moreover, CA125 for lymphoma detection had the same

performance between female and male patients, suggesting that

CA125 is not female-specific as we may think in ovarian cancer.

Therefore, our study suggests that CA125 can be a potential

biomarker in lymphoma, especially in HL, for diagnosis.

The CNA analysis demonstrated that aggressive B-cell

patients had a higher concentration of ctDNA in plasma which

might be the reason for aggressive B-cell lymphoma patients who

usually had a poor prognosis (57). We also found CNA from our

assay could also reveal some lymphoma critical genes, such as

TNFRSF14 in 1p36.32, TNFAIP3 in 6q23.3, and SETD2 in 3p21.31.

These cancer genes play an important role in immune escape and

apoptotic response, which might benefit the strategy for lymphoma

therapy and predict the prognosis. Specifically, mutations and

deletions in the TNFRSF14 gene are common in follicular

lymphoma (FL), increasing the ability of lymphoma cells to

stimulate allogeneic T-cell responses. FL patients with TNFRSF14

aberrations may benefit from more aggressive immunosuppression

to reduce harmful graft-versus-host disease after transplantation

(58). Loss of TNFAIP3 enhances MYD88L265P-driven signaling in

non-Hodgkin lymphoma, presenting a potential opportunity for

therapeutic targeting (59). Each subtype had a different CNA

positive ratio and some unique frequently amplified/deleted

regions, such as HL are frequently amplified at 2p, 9, 14, 19 and

deleted at 1p, 4q, 13q. These genomic regions were also reported to

be frequently affected by CNA in previous HL studies (60, 61). In

addition to lymphoma diagnosis, the CNA profiles could be used to

identify lymphoma subtypes and predict prognosis to some extent.

Similar fragmentation patterns were found in lymphoma as in

solid tumors, such as HCC, showing the 10-bp periodic peaks

located between 80 and 150 bp size ranges as previously reported

(22). We have tried several methods to estimate the difference in FS

between lymphoma patients and healthy individuals. We found a

method to calculate the FS.S-L, which had a better performance

than the previously published method P150.

As cleavage and fragmentation of cfDNA are nonrandom

processes, cleavage site preference can be associated with tissue

sources, disease status, chromatin accessibility, and nuclease activities

(16, 33, 62). Thus, we were the first to depict the fragment-omics

character of lymphoma based on end motifs and found a specific

cluster of end motif frequency. Just like the HCC study (63), we also

demonstrated that the end motif could be used to differentiate

lymphoma from healthy subjects, which achieved an AUC of 0.902.

Quantitative detection of EBV by sWGS in blood achieved high

sensitivity (93.8%) at 100% specificity, which was much more
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sensitive than real-time PCR (31.3% sensitivity). One fact that

people with EBV positive might be caused by other diseases (e.g.,

ongoing infectious mononucleosis) irrespectively of lymphoma.

Nonetheless, the combination of EBV quantification and typical

lymphoma alterations of other dimensions (CNA/end motif)

strongly indicates an EBV-driven lymphoma. Meanwhile, EBV

was also used as a molecular biomarker for disease monitoring

and prognosis prediction in EBV positive patients, since

pathogenesis and genetics were different between EBV-positive

patients and EBV-negative patients, especially in HL, Burkitt

lymphoma and some subtypes of T/NK-cell NHL (38, 39, 64).

Even more, the SeekInCare assay was not only more sensitive to

monitoring EBV expression in the blood than the real-time PCR

method, but also reflected the dynamic change of lymphoma-

associated mutations (CNA).

While the blood samples were collected from only three patients

after two treatment cycles, this nevertheless underscores the

potential of plasma-based molecular dynamics in promptly and

accurately assessing treatment effectiveness. This finding is

consistent with previous studies that demonstrated ctDNA levels

after two treatment cycles serving as prognostic factors, with ctDNA

dynamics significantly associated with clinical outcomes in DLBCLs

(57, 65). This capability is particularly crucial in distinguishing

genuine treatment responses from pseudo-responses (66).

This study had some limitations. More prospectively collected

samples from multiple centers or real-world scenarios are needed to

validate the generalizability of SeekInCare. Even though the assay

demonstrated with high specificity of 98.0%, there are still 2.0%

positive that require those individuals to go through routine clinical

workup for confirmation including CT scan and/or biopsy.

SeekInCare for lymphoma detection utilized common cancer

hallmarks, not specific characteristics of lymphoma (such as AFP

for HCC). We found the blood markers associated with lymphoma

tumor burden including lactate dehydrogenase (LDH) and beta 2

microglobulin (b2M) were also informative with 38.6% positivity

for LDH and 30.8% for b2M based on the clinical cut-offs in the

current study. We could build a baseline in a healthy cohort to

optimize the specificity of LDH and b2M combining with the

features of SeekInCare for lymphoma early detection in a

future study.

Recent studies have demonstrated that fragment-omics features

from sWGS could be used to predict tissue origin of cancer (21, 67),

and it would be optimized in future studies. Therefore, lymphoma

would be differentiated from other cancers through the TOO

algorithm and lymphoma patients could benefit from blood-based

non-invasive early detection. Indeed we were able to identify nine

lymphoma patients out of total 41 cancer cancer cases in our proof-

of-concept study utilizing CNAs and the seven protein markers

(18). SeekInCare could be used as a complementary test to medical

imaging to distinguish the benign and malignant lymph nodes,

especially for patients with that affected nodes were difficult to

reach, or tissue-based subtyping was inconclusive. In summary, a

non-invasive assay (SeekInCare) was validated in our case-control

study, achieving an AUC of 0.947 for lymphoma detection, which

also provided insights into lymphoma monitoring and multi-cancer

early detection.
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SUPPLEMENTARY FIGURE 1

Schematic of multi-omics and multidimensional SeekInCare approach. One

tube (8ml) of peripheral blood was collected from healthy individuals and
lymphoma patients. cfDNA was extracted and then analyzed the cancer

genomics, epigenetics, and virus infection through shallow whole genome
sequencing. Meanwhile, the expression of seven protein tumor markers

was also measured in the plasma. Cancer risk score (CRS) was calculated

by machine learning method, which integrated CNA, FS, end motif, virus,
and protein marker. CNA, copy number aberration, WGS, whole

genome sequencing.

SUPPLEMENTARY FIGURE 2

(A) Violin plot showed the number of CNA bins in healthy individuals and

patients across different lymphoma subtypes. Since the y-axis was a

logarithmic scale, sample without CNA bins was changed to 0.1. The
dotted line indicated the cut-off value of CNA positive. (B) The Heatmap

showed the segmented CNA profiles of all lymphoma patients. The
chromosomes were arranged vertically from top to bottom, and lymphoma

samples were sorted by the genomic region size of CNA among each
lymphoma subtype from left to right. Red and blue represent amplification

and deletion, respectively. HL, Hodgkin lymphoma; T/NK, T/NK cell

lymphoma; Indolent, indolent B-cell lymphoma; DLBCL, diffuse large B-
cell lymphoma.

SUPPLEMENTARY FIGURE 3

The proportion of plasma EBV DNA reads among the total number of
sequenced plasma DNA reads in healthy individuals and lymphoma

patients. The cut-off value was 0.5 reads/M (dotted line). HL, Hodgkin

lymphoma; T/NK, T/NK cell lymphoma; Indolent, indolent B-cell
lymphoma; DLBCL, diffuse large B-cell lymphoma.

SUPPLEMENTARY FIGURE 4

(A)The Pearson correlation between different features among all samples. (B)
Precision-recall curve for the CRS values obtained from the SeekInCare assay

in the classification of lymphoma patients. CNA, copy-number aberration.

FS.S-L, the ratio difference between short and long fragments. EBV, Epstein–
Barr virus.

SUPPLEMENTARY FIGURE 5

The dynamic changes in each feature before and after treatment were
illustrated. The dotted line represented the cut-off value set at the 98th

percentile within the healthy group.
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