124 research outputs found

    Investigation of hot spring gas components and soil gas fluxes in Arxan Holocene volcanic field, Inner Mongolia, NE China

    Get PDF
    The latest research results show that there is a unified magma system and heating channel beneath the Arxan volcanic field, indicating a potential risk of eruption. The Arxan volcanic field features multiple gas emission sites (e.g., Jinjianggou hot springs and Yinjianggou hot springs) and exhibits strong hydrothermal activity. In this study, measurements of the hot spring gas composition and soil CO2 flux in the Arxan Holocene volcanic field were conducted, and the results were combined with previous research results to analyze the degassing characteristics of this region. The results show that the volcanic gases in the Arxan volcanic field are composed of 0.07%ā€“1.09% CO2, 0.33ā€“12Ā ppm CH4, 1.57ā€“53Ā ppm H2, 800ā€“30,241Ā ppm He, and 1.14%ā€“1.86% Ar. The He content in this area is notably higher than that in other dormant volcanoes in China. This difference is possibly caused by Uā€“Th decay in the Mesozoic granodiorite and acidic volcanic rocks in the study area, which can produce substantial radiogenic He. The soil gas concentrations near the Jinjianggou and Yinjianggou hot springs are higher than those of two Holocene volcanoes. The peak CO2 concentration in the soil near the Jinjianggou hot spring can reach 35,161Ā ppm. The single-site soil microseepage CO2 flux in the Arxan volcanic field is 4.66ā€“107.18Ā gĀ māˆ’2 dāˆ’1, and the estimated annual CO2 emission flux from the volcanic field to the atmosphere is 0.63 Ɨ 105Ā t, which also demonstrates that soil CO2 flux of Arxan volcano is comparable to the soil CO2 emission level of the Iwojima volcano

    Overexpression of GATA2 Enhances Development and Maintenance of Human Embryonic Stem Cell-Derived Hematopoietic Stem Cell-like Progenitors

    Get PDF
    GATA2 is essential for the endothelial-to-hematopoietic transition (EHT) and generation of hematopoietic stem cells (HSCs). It is poorly understood how GATA2 controls the development of human pluripotent stem cell (hPSC)-derived HS-like cells. Here, using human embryonic stem cells (hESCs) in which GATA2 overexpression was induced by doxycycline (Dox), we elucidated the dual functions of GATA2 in definitive hematopoiesis before and after the emergence of CD34+CD45+CD90+CD38ā€“ HS-like cells. Specifically, GATA2 promoted expansion of hemogenic precursors via the EHT and then helped to maintain HS-like cells in a quiescent state by regulating cell cycle. RNA sequencing showed that hPSC-derived HS-like cells were very similar to human fetal liver-derived HSCs. Our findings will help to elucidate the mechanism that controls the early stages of human definitive hematopoiesis and may help to develop a strategy to generate hPSC-derived HSCs

    Overexpression of GATA2 Enhances Development and Maintenance of Human Embryonic Stem Cell-Derived Hematopoietic Stem Cell-like Progenitors

    Get PDF
    GATA2 is essential for the endothelial-to-hematopoietic transition (EHT) and generation of hematopoietic stem cells (HSCs). It is poorly understood how GATA2 controls the development of human pluripotent stem cell (hPSC)-derived HS-like cells. Here, using human embryonic stem cells (hESCs) in which GATA2 overexpression was induced by doxycycline (Dox), we elucidated the dual functions of GATA2 in definitive hematopoiesis before and after the emergence of CD34āŗCD45āŗCD90āŗCD38ā» HS-like cells. Specifically, GATA2 promoted expansion of hemogenic precursors via the EHT and then helped to maintain HS-like cells in a quiescent state by regulating cell cycle. RNA sequencing showed that hPSC-derived HS-like cells were very similar to human fetal liver-derived HSCs. Our findings will help to elucidate the mechanism that controls the early stages of human definitive hematopoiesis and may help to develop a strategy to generate hPSC-derived HSCs

    Mitigating NO_x emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei (BTH), China

    Get PDF
    Stringent mitigation measures have reduced wintertime PM_(2.5) concentrations by 42.2% from 2013 to 2018 in the BTH. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM_(2.5), although the surface-measured NOā‚‚ level has decreased by over 20%. It still remains elusive about contributions of nitrogen oxides (NO_x) emissions mitigation to the nitrate and PM_(2.5) level. The WRF-Chem model simulations of a persistent haze episode in January 2019 in the BTH reveal that NO_x emissions mitigation does not help lower wintertime nitrate and PM_(2.5) concentrations under current conditions in the BTH, because the substantial Oā‚ƒ increase induced by NO_x mitigation offsets the HNOā‚ƒ loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by occurrence of the severe PM pollution in the BTH during the COVID-19 outbreak with a significant reduction of NOā‚‚

    Mitigating NO_x emissions does not help alleviate wintertime particulate pollution in Beijing-Tianjin-Hebei (BTH), China

    Get PDF
    Stringent mitigation measures have reduced wintertime PM_(2.5) concentrations by 42.2% from 2013 to 2018 in the BTH. The observed nitrate aerosols have not exhibited a significant decreasing trend and constituted a major fraction (about 20%) of the total PM_(2.5), although the surface-measured NOā‚‚ level has decreased by over 20%. It still remains elusive about contributions of nitrogen oxides (NO_x) emissions mitigation to the nitrate and PM_(2.5) level. The WRF-Chem model simulations of a persistent haze episode in January 2019 in the BTH reveal that NO_x emissions mitigation does not help lower wintertime nitrate and PM_(2.5) concentrations under current conditions in the BTH, because the substantial Oā‚ƒ increase induced by NO_x mitigation offsets the HNOā‚ƒ loss and enhances sulfate and secondary organic aerosols formation. Our results are further consolidated by occurrence of the severe PM pollution in the BTH during the COVID-19 outbreak with a significant reduction of NOā‚‚

    DNA self-assembly nanoflower reverse P-glycoprotein mediated drug resistance in chronic myelogenous leukemia therapy

    Get PDF
    Introduction: Chronic myelogenous leukemia (CML) is a clonal myeloproliferative disorder caused by the BCR-ABL chimeric tyrosine kinase. Vincristine (VCR) is widely used in leukemia therapy but is hindered by multidrug resistance (MDR).Methods: We prepared DNA nanoflower via self-assembly for the delivery of VCR and P-glycoprotein small interfering RNA (P-gp siRNA).Results and Discussion: The as-prepared nanoflower had a floriform shape with high loading efficiency of VCR (80%). Furthermore, the nanoflower could deliver VCR and P-gp siRNA into MDR CML cells and induce potent cytotoxicity both in vitro and in vivo, thus overcoming MDR of CML. Overall, this nanoflower is a promising tool for resistant CML therapy

    dbDEPC: a database of Differentially Expressed Proteins in human Cancers

    Get PDF
    Cancer-related investigations have long been in the limelight of biomedical research. Years of effort from scientists and doctors worldwide have generated large amounts of data at the genome, transcriptome, proteome and even metabolome level, and DNA and RNA cancer signature databases have been established. Here we present a database of differentially expressed proteins in human cancers (dbDEPC), with the goal of collecting curated cancer proteomics data, providing a resource for information on protein-level expression changes, and exploring protein profile differences among different cancers. dbDEPC currently contains 1803 proteins differentially expressed in 15 cancers, curated from 65 mass spectrometry (MS) experiments in peer-reviewed publications. In addition to MS experiments, low-throughput experiment data from the same literatures and cancer-associated genes from external databases were also integrated to provide some validation information. Furthermore, dbDEPC associates differential proteins with important structural variations in the human genome, such as copy number variations or single nucleotide polymorphisms, which might be helpful for explaining changes in protein expression at the DNA level. Data in dbDEPC can be queried by protein identifier, description or sequence; the retrieved protein entry provides the differential expression pattern seen in cancers, along with detailed annotations. dbDEPC is expected to be a reference database for cancer signatures at the protein level. This database is provided at http://dbdepc.biosino.org/index/
    • ā€¦
    corecore