246 research outputs found

    Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments

    Full text link
    Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings.Comment: COLING 202

    Terahertz magnetic field induced coherent spin precession in YFeO3

    Get PDF
    We present the magnetic dipole transition at 0.299 THz excited by magnetic component of terahertz electromagnetic pulse in an antiferromagnetic YFeO3 crystal. The impulsive magnetic field of the terahertz pulse tilts the macroscopic magnetization, causing deviation from the equilibrium position, which is manifested by a sharp absorption at the frequency of the quasiferromagnetic mode of the crystal. The rotating coherent macroscopic magnetization radiates elliptically polarized emission at the frequency of the quasiferromagnetic resonance due to the dichroic absorption in the crystal

    Global Transcriptomic Analysis and Function Identification of Malolactic Enzyme Pathway of Lactobacillus paracasei L9 in Response to Bile Stress

    Get PDF
    Tolerance to bile stress is crucial for Lactobacillus paracasei to survive in the intestinal tract and exert beneficial actions. In this work, global transcriptomic analysis revealed that 104 genes were significantly changed (log2FoldChange > 1.5, P < 0.05) in detected transcripts of L. paracasei L9 when exposed to 0.13% Ox-bile. The different expressed genes involved in various biological processes, including carbon source utilization, amino acids and peptide metabolism processes, transmembrane transport, transcription factors, and membrane proteins. It is noteworthy that gene mleS encoding malolactic enzyme (MLE) was 2.60-fold up-regulated. Meanwhile, L-malic acid was proved to enhance bile tolerance, which could be attributed to the intracellular alkalinization caused by MLE pathway. In addition, membrane vesicles were observed under bile stress, suggesting a disturbance in membrane charge without L-malic acid. Then, genetic and physiological experiments revealed that MLE pathway enhanced the bile tolerance by maintaining a membrane balance in L. paracasei L9, which will provide new insight into the molecular basis of MLE pathway involved in bile stress response in Lactic acid bacteria

    A case report of a family with developmental arrest of human prokaryotic stage zygote

    Get PDF
    To study the genetic variation leading to the arrest phenotype of pronuclear (PN) zygotes. We recruited a family characterized by recurrent PN arrest during in vitro fertilization (IVF) and intracytoplasmic sperm injection cycles (ICSI) and performed whole-exome sequencing for 2 individuals. The transcriptome profiles of PN-arrest zygotes were assessed by single-cell RNA sequencing analysis. The variants were then validated by PCR amplification and Sanger sequencing in the affected individuals and other family members. A family characterized by recurrent PN arrest during IVF and ICSI cycles were enrolled after giving written informed consent. Peripheral blood samples were taken for DNA extraction. Three PN-arrest zygotes from patient III-3 were used for single-cell RNA-seq as described. This phenotype was reproduced after multiple cycles of egg retrieval and after trying different fertilization methods and multiple ovulation regimens. The mutant genes of whole exon sequencing were screened and verified. The missense variant c. C1630T (p.R544W) in RGS12 was responsible for a phenotype characterized by paternal transmission. RGS12 controls Ca2+ oscillation, which is required for oocyte activation after fertilization. Single-cell transcriptome profiling of PN-arrest zygotes revealed defective established translation, RNA processing and cell cycle, which explained the failure of complete oocyte activation. Furthermore, we identified proximal genes involved in Ca2+ oscillation–cytostatic factor–anaphase-promoting complex (Ca2+ oscillation–CSF–APC) signaling, including upregulated CaMKII, ORAI1, CDC20, and CDH1 and downregulated EMI1 and BUB3. The findings indicate abnormal spontaneous Ca2+ oscillations leading to oocytes with prolonged low CSF level and high APC level, which resulted in defective nuclear envelope breakdown and DNA replication. We have identified an RGS12 variant as the potential cause of female infertility characterized by arrest at the PN stage during multiple IVF and ICSI

    Terahertz magnetic field induced coherent spin precession in YFeO 3

    Get PDF
    We present the magnetic dipole transition at 0.299 THz excited by magnetic component of terahertz electromagnetic pulse in an antiferromagnetic YFeO3 crystal. The impulsive magnetic field of the terahertz pulse tilts the macroscopic magnetization, causing deviation from the equilibrium position, which is manifested by a sharp absorption at the frequency of the quasiferromagnetic mode of the crystal. The rotating coherent macroscopic magnetization radiates elliptically polarized emission at the frequency of the quasiferromagnetic resonance due to the dichroic absorption in the crystal
    • …
    corecore