221 research outputs found
ZnO Nanorods Grown Directly on Copper Foil Substrate as a Binder-Free Anode for High Performance Lithium-Ion Batteries
ZnO nanorods directly grown on copper foil substrate were obtained via hydrothermal method without using templates. Structure and morphology of the as-prepared ZnO nanorods were characterized by X-ray diffraction, scanning electron microscopy and high-resolution transmission electron microscopy. The ZnO nanorods on copper foil (ZnO@CF) exhibited remarkably enhanced performance as anode for lithium batteries with the initial discharge capacity of 1236 mAh g-1 and a capacity of 402 mAh g-1 retained over 100 cycles at a current density of 200 mA g-1. The ZnO@CF anode demonstrated an excellent rate capability, delivering a reversible capacity of 390 mAh g-1 at 1500 mA g-1. This superior performance of the ZnO@CF anode is believed to be due to the unique structure of this binder-free anode, favoring mass and charge transfer at its interface with the electrolyte, effectively reducing the Li-ions diffusion paths and providing conditions to accommodate the anode volume variations upon charge-discharge cycling
Quantifying multi-regional indirect economic losses: An assessment based on the 2021 rainstorm events in China
Quantitative assessment of economic losses from disasters can benefit government decision-making as well as mitigation and adaptation strategies. Here, we identified significant rainstorm events in China in 2021 using an objective identification method and investigated the direct economic losses (DELs) from each event. Then, a loss assessment model was developed to estimate the indirect economic losses (IDELs) from rainstorm events. We found that, in 2021, China experienced 36 major rainstorm events, causing approximately 179.8 billion yuan in DELs. The north of China was severely affected by rainstorms and floods, with Henan, Hebei and Shaanxi being the main loss centers. The assessment of IDELs based on rainstorm events showed a non-linear relationship between direct and indirect losses. The socio-economic impact of the 2021 Henan flood (Event No. 15) was the most serious, with direct and indirect losses of 125.8 billion yuan and 269.1 billion yuan, respectively. The primary industry in Henan was seriously affected, and the impact also spread to Inner Mongolia and Guangdong, causing indirect losses of 23.9 billion and 13.1 billion yuan, respectively. We recommend that the indirect losses resulting from such interregional trade linkages should be considered in catastrophe risk management. Finally, the sensitivity analysis showed that moderate overproduction can reduce the indirect impacts caused by disasters. A more detailed study is required to explore how to determine the appropriate levels of disaster relief, as well as a rational funding allocation mechanism
Experimental study of aerospace solid propellant fracturing in simulated coal sample
Coal reservoirs with high gas content and low permeability seriously restrict the efficient production of coal and coalbed methane. It is necessary to fracture and enhance the permeability of coal reservoirs. Aerospace solid propellant deflagration can generate a large amount of high-energy gas to impact coal reservoirs, which can achieve the purpose of fracturing and enhancing permeability of coal reservoirs. To study the characteristics of aerospace solid propellant for fracturing coal, a solid propellant for fracturing and permeability enhancement of coal reservoir was firstly researched and developed based on the formula of civil aerospace solid propellant, was, and its performance, sensitivity, pressure and temperature resistance were tested. The aerospace solid propellant fracturing test was then carried out using simulated coal samples, and the borehole wall pressure and strain within the simulated coal samples were monitored during the test. Finally, the destruction characteristics of simulated coal samples were analyzed according to the test results. The results shown that the aerospace solid propellant had good performance, with the advantages of waterproof, pressure resistant, and no CO generation, which could be adapted to the underground environment of coal mine. During the test, the time curve of the borehole wall pressure shown the stages of rapid pressure rise, slow pressure rise, and nonlinear pressure drop, in which the rise time of the borehole wall pressure was about 18 ms. The peak pressure in the borehole was low and unevenly distributed. The peak pressure in the middle of the borehole was 118.1 MPa, and the peak pressure at the bottom of the borehole was 85.3 MPa. Stress wave generated in simulated coal sample during aerospace solid propellant fracturing was composed of compressive and tensile phases with low intensity, long duration and slow decay with distance. The aerospace solid propellant fracturing technology was dominated by the quasi-static action of high-energy gas, with high utilization of stress wave energy. The research results provide a reference for the application of aerospace solid propellant in the field of coalbed methane mining
Electric-field-driven Non-volatile Multi-state Switching of Individual Skyrmions in a Multiferroic Heterostructure
Electrical manipulation of skyrmions attracts considerable attention for its
rich physics and promising applications. To date, such a manipulation is
realized mainly via spin-polarized current based on spin-transfer torque or
spin-orbital torque effect. However, this scheme is energy-consuming and may
produce massive Joule heating. To reduce energy dissipation and risk of
heightened temperatures of skyrmion-based devices, an effective solution is to
use electric field instead of current as stimulus. Here, we realize an
electric-field manipulation of skyrmions in a nanostructured
ferromagnetic/ferroelectrical heterostructure at room temperature via an
inverse magneto-mechanical effect. Intriguingly, such a manipulation is
non-volatile and exhibits a multi-state feature. Numerical simulations indicate
that the electric-field manipulation of skyrmions originates from
strain-mediated modification of effective magnetic anisotropy and
Dzyaloshinskii-Moriya interaction. Our results open a direction for
constructing low-energy-dissipation, non-volatile, and multi-state
skyrmion-based spintronic devices.Comment: Accepted by Nature Communications 11, 3577 (2020
Fe3O4–Au and Fe2O3–Au Hybrid Nanorods: Layer-by-Layer Assembly Synthesis and Their Magnetic and Optical Properties
A layer-by-layer technique has been developed to synthesize FeOOH–Au hybrid nanorods that can be transformed into Fe2O3–Au and Fe3O4–Au hybrid nanorods via controllable annealing process. The homogenous deposition of Au nanoparticles onto the surface of FeOOH nanorods can be attributed to the strong electrostatic attraction between metal ions and polyelectrolyte-modified FeOOH nanorods. The annealing atmosphere controls the phase transformation from FeOOH–Au to Fe3O4–Au and α-Fe2O3–Au. Moreover, the magnetic and optical properties of as-synthesized Fe2O3–Au and Fe3O4–Au hybrid nanorods have been investigated
Potential of Core-Collapse Supernova Neutrino Detection at JUNO
JUNO is an underground neutrino observatory under construction in Jiangmen, China. It uses 20kton liquid scintillator as target, which enables it to detect supernova burst neutrinos of a large statistics for the next galactic core-collapse supernova (CCSN) and also pre-supernova neutrinos from the nearby CCSN progenitors. All flavors of supernova burst neutrinos can be detected by JUNO via several interaction channels, including inverse beta decay, elastic scattering on electron and proton, interactions on C12 nuclei, etc. This retains the possibility for JUNO to reconstruct the energy spectra of supernova burst neutrinos of all flavors. The real time monitoring systems based on FPGA and DAQ are under development in JUNO, which allow prompt alert and trigger-less data acquisition of CCSN events. The alert performances of both monitoring systems have been thoroughly studied using simulations. Moreover, once a CCSN is tagged, the system can give fast characterizations, such as directionality and light curve
Detection of the Diffuse Supernova Neutrino Background with JUNO
As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
- …